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Noise sustained pattern growth: Bulk versus boundary effects
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The effect of thermally generated bulk stochastic forces on the statistical growth dynamics of forward
bifurcating propagating macroscopic patterns is compared with the influence of fluctuations at the boundary of
a semi-infinite system, @x. To that end the linear complex Ginzburg-Landau amplitude equation with addi-
tive stochastic forcing is solved by a spatial Laplace transformation in the presence of arbitrary boundary
conditions for the fluctuations of the pattern amplitudeat0. A situation where the latter are advected with
an imposed through-flow from an outside upstream part towards the inlet boundar0ais investigated in
more detail. The spatiotemporal growth behavior in the convectively unstable regime is compared with recent
work by J. B. Swift, K. L. Babcock, and P. C. Hohenbdighysica A204, 625 (1994] where a special
boundary condition is imposefiS1063-651X97)02905-X]

PACS numbe(s): 47.20—k, 43.50+y, 47.60+i, 05.40+]

I. INTRODUCTION direction one expects that fluctuations generated near the in-
let boundary atx=0 and/or perturbations that might enter
Nonequilibrium extended systems that undergo a patterthe system via the inlet are most important. They have the
forming instability with nonzero group velocityfl]—  longest advection or amplification time to grow in the flow
whether the latter arises in open-flow configuratiih§] via  before they reach a particular observation point at a down-
an imposed through-floy4—15] or internally from a bifur- ~ stream locatiorx>0. Therefore a careful analysis of the in-
cation to traveling wavesl6—18—show a peculiar sensitiv- fluence of the inlet boundary condition relative to the effect
ity to perturbations in the so-called convectively unstableof bulk (fluctuating forces is necessary, particularly in view
parameter regim¢l19,20. Therein initially spatially local- of the fact that both sources cause exponential growth. Such
ized perturbations superimposed on some basic unstablgn analysis should be able to shed some light on the problem
macroscopically unstructured nonequilibrium state of theof whether in bounded experimental systems it is internal
system are advected downstream by the group velocity. Skulk generated thermal noise that triggers and sustains the
multaneously they are selectively amplifig2D,21] accord-  growth of macroscopic vortex structures in the convectively
ing to the deterministic amplification mechanism that occurdinstable regime or another kind of environment-produced
near the pattern forming bifurcatiga]. Thus, advection spa- perturbation that might, e.g., be advected from the inlet
tially deconvolutes the pattern growth from its cause—thedoundary into the bulk.
perturbation source. But the latter leaves its signature via the On the theoretical side the effect of noise on the pattern
bifurcation-induced, deterministic amplification process onforming process has been investigated mainly within the
the spatiotemporal properties of the downstream growindgramework of the complex Ginzburg-Landau amplitude
macroscopic nonequilibrium structures. The statistical dy€quation(CGLE). It describes the slow spatiotemporal be-
namics of fluctuations of these structures is easily detectableavior of the complex amplitud&(x,t) of the critical mode
[5-8,10-12,17,1B thus providing information about the of the pattern that can grow first when crossing the bifurca-
small perturbations that have triggered their growth. tion threshold. Bulk thermal noise is incorporated in this ap-
The feasibility to distinguish the influence of different proximation scheme by fluctuating volume fordg¢s,t) that
perturbation sources—e.g., those that are external to the syaet additively onA(x,t) and that are derivef22—2¢ for
tem under study versus internal thermal noise—on the madecal thermal equilibrium conditions of driven systems from
roscopic pattern growth in a very direct way has attractedhe linear Landau-Lifshitz equations of fluctuating hydrody-
much research activity recenfl§—8,10-12,17,18Here one  namics around global thermal equilibriJr@7]. The problem
has to keep in mind that the deterministic bifurcation dynam-of the inlet boundary condition that arises with the CGLE in
ics of the macroscopic structure forming instability deter-a finite domain has been addressed only in some idealized
mines which of the modes that a perturbation source emits iway: Deissler[28] imposesA=0 at the inlet. Leke and
amplified and which one decays in the downstream directionRecktenwald[29] investigate the pattern growth resulting
And as long as the mode amplitudes are still small each ofrom an inlet boundary condition that is produced by thermal
the perturbation modes evolves separately and indeperquilibrium transverse momentum fluctuations that are ad-
dently: the bifurcation dynamics is initially linear with satu- vected into the system at=0. Babcock, Ahlers, and Can-
rating nonlinearities being irrelevant, thus producing expo-nell [8] have solved the stochastic CGLE numerically in a
nential growth with time and downstream distance. system that was augmented in the upstream direction, i.e., to
Hence, in a system with group velocity in the positive negativex by a small subcritical part and compared with
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imposing A=0 at x=0. Swift, Babcock, and Hohenberg = We use the relative control parameter
(SBH) [25] consider solutions of the stochastic CGLE where
the amplitude fluctuation®\(x=0;t) at the boundary are _ Ra 1 or _ T 1 2.1)
strongly correlated with the bulk thermal forcirig ® Ra.(Re) B T.(Re '
In this paper we first of all solve the stochastic CGLE
subject to arbitrary inlet boundary conditions with a spatialto measure the distance from the onset of propagating vortex
Laplace transformation method. We investigate the influenc8ow for Re#0 and of stationary vortex flow for ReO,
of thermally generated bulk additive forcing on the statisticalréspectively. In this notatiop =0, i.e.,
dynamics of downstream growing amplitude fluctuations in

comparison with the effect of statistically stationary inlet (Re)= Ra(Re) _ or e(Re= Tc(Re) _
fluctuations that are independent of the bulk forcing. Further- © Ra(Re=0) ¢ Tc(Re=0)
more, we use a simple model to estimate fluctuations that are (2.2

swept with an imposed through-flow into some experimental . .
systems via the inlet. This allows us to assess more quant’i§ the critical reduced threshold for the onset of propagating

tatively the importance of such inlet fluctuations relative o VOrtex flow. The shear forces .Of the through-f_low sl_lghtly

bulk thermal forcing. Experimental setups to tune and con-Stablllze the homogeneous basic statgec{&e) slightly in-

trol the former are briefly discussed as well. Finally we com-CT€ases with Rg2,4,6-8,31. Note th?‘t in the RB system we

pare our results in detail with the results of SBH. consider so-called transverse vortices whose roll axes are
Our paper is organized as follows: In Sec. Il the linear€nforced to lie perpendicular to the through-flow direction by

stochastic CGLE with thermally generated bulk additivethe geometrical design of the rectg_ngular convection chan-
forcing is briefly reviewed. The solution for the fluctuating nel. So for not too I_arge Re the critical wave ve_ctor_of the
amplitudes in frequency spao&(x, ), and their correlation vortex patterns is oriented in both cases alongxtiéection
spectra are given in Sec. lll. Section IV presents the mode‘i’f the through-flowkc=Kce.
for inlet fluctuations and compares their downstream evolu-
tion with the growth of bulk generated fluctuations. Section A. Amplitude equation approximation
V contains a summary. In Appendix A we present the For small supercritical control parameterss <1, the
“space-retarded, causal” Green function of our solution in macroscopic vortex dynamics is go\/erned by a narrow band
the convectively unstable regime. In Appendix B we com-of near critical modes. This allows one to represent the hy-
pare our results for the Green function, amplitude fluctuagrodynamic fields within an amplitude equation approxima-
tions, and correlation spectra with those of SBH. tion [1] by a Comp|ex amphtudé(xyt) mu|t|p|y|ng the criti-
cal mode
Il. SYSTEMS wix,r t)=Ax ek edw(r Y+cc. (2.3

The systems that we have in mind show a continuous, i.e., . :
hysteresis-free, transition, say, from a spatially homogeneodd€T€W IS, for example, a component of the vortex velocity
state to a spatially structured one. Thus, a spatially periodifi€!d- The critical wave numbec,, frequencyw. [4,6-8,31~
solution branches in a forward bifurcation out of the basic33], and eigenfunction(r, ) [32,34 depending on the co-
solution at a critical control parameter. The most intensivelyordinatesr, perpendicular to the critical wave vector of the
studied examples for such systems are the Rayleiglaite downstream propagating vortex structures are known as
(RB) problem of straight roll convection vortices in a fluid functions of Re from a linear stability analysis of the basic
layer heated from beloWl] or the rotating Taylor-Couette flow.
(TC) problem of axisymmetric toroidal Taylor vortices in the In the absence of fluctuations the spatiotemporal behavior
annulus between concentric cylinders of which the inner on@f the complex vortex amplitud&(x,t) is determined by the
is rotating[1,30]. But our investigation, being based on the 1D CGLE:
CGLE for such one-dimensionélD) patterns, also includes ) ) 5.0
other problems for which this equation captures the essential 7o(dt+ ) AMX D) =[(1+ico)u+(1+icy)Edy]A(X,T)
parts of the pattern formation process. Nevertheless, we shall ;
use in the remainder of this paper the terminology of the RB * (nonlinear termy @4
or TC system. Thus, we consider in particular open(®B)  The coefficientsr, and £2 are even in Re while the group

setups with an externally imposed horizon(akia_l) mean  yelocity v and the imaginary partsy,c; are odd in Re
flow through a not too wide rectangular convective channe[s 31].

(annulus between concentric cylinder§hen the determin-
istic field equations show an oscillatory instability. The
structureless, stationary basic flow without vortices is stable
for Rayleigh numbers Réraylor numbersT) below a criti- For smallx and Re the control parameter plane is divided
cal threshold RdRe) [ T.(Re)] that depends on the through- into three domains characterized by different growth behav-
flow Reynolds number Re. At the critical threshold a stablejor of linear perturbations of the basic flow state. In the
spatially extended, temporally oscillatory state of down-presence of through-flow one has to distinguis8] between
stream propagating vortices branches off the basic state. THbe spatiotemporal growth behavior of spatially localized
latter is unstable and the former is stable for supercriticaperturbations and that of spatially extended ones. Below the
driving. thresholdu =0 for onset of propagating vortex patterns any

B. Absolute and convective instability
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perturbation, spatially localized as well as extended, decay$22—26 of these equations onto the critical modes leads then
This is the parameter regime of absolute stability of the basito the linear stochastic CGLE,

state.
For u>0 extended perturbations can grow. However, a [ 7o(diFvdx) = (1+ice)u—(1+icy) EGaIAX D) =f(X,1),
spatially localized perturbation, i.e., a packet of plane wave (2.7

perturbations, is advected in the so-called convec_tlvely UNc ith Gaussian distributed complex forcééx t) that ares
stable parameter regime faster downstream than it grows—

while growing in the comoving frame it moves out of the correlated in space and time:

system[19-21,35. Thus, the downstream as well as the up- (F(x, 1))y =(F(x,t)f(x’,t"))=0, (2.83
stream facing intensity front of the vortex packet move in the
same direction, namely, downstream. A spatially localized FOGOFX )T =Fa(x—x")8(t—t'). (2.80

perturbation is blown out of any system of finite length and
the basic state is reestablished. It therefore requires a persidere the asterisk implies complex conjugation. The noise
tent source of perturbations such as, e.g., noise operating strengthF has been evaluated by several authi@es-26 for
the bulk or fluctuations entering the system via the inlet tothe RB and TC systems without through-flow and with dif-
sustain a vortex pattern in the convectively unstable regiméerent boundary conditions. Since we do not need the spe-
[21]. The spatiotemporal behavior of such “noise sustainecific values ofF we shall not dwell on questions of whether
structures”[8,12] being determined by the noise source thusand how the forces are changed by finite-size effects, system
allows one to infer properties of the latter from the former. geometry, and the through-flow. We rather take E@s?)

In the absolutely unstable regime a localized perturbatiorand (2.8) as the starting point for our investigations.
not only grows in the downstream direction but it grows and However, for later use we mention that oris related
spatially expands also in the upstream direction until the upvia F=2¢,7,F 52" to the noise strength 52" given in Egs.
stream propagating front encounters the inlet in a finite sys¢2.10—(2.16) of SBH. We would also like to mention that
tem [13]. The final nonlinear stucturf4,5,9,10,13-15,36 the value ofF characterizing a particular system depends on
resulting in such a situation is self-sustained and stable. Fahe arbitrary choice of the normalization condition for the
sufficiently large amplitudes this structure is dominated byinear critical modei(r,) that enters into Eq2.3) and that
the deterministic contributions in the relevant balance equaestablishes the relation between the physically observable

tions and thus it is insensitive to, say, thermal noise. order parameter field/(x,r, ;t) and the complex amplitude
Within the framework of the amplitude equation the a of the critical mode.

boundary between absolute and convective instability is

given by[21] Il. LINEAR STOCHASTIC CGLE
2,2 IN SEMI-INFINITE SYSTEMS
c 0
Mconv™ —m4(1 A (2.9 In this section we discuss the statistical dynamics of pat-

tern growth in the convectively unstable parameter regime as
described by the stochastically forced linear CQRrE). We
consider a semi-infinite system with the through-flow enter-
ing the system at=0. This flow transports fluctuations into
the system that we specify by imposing an inlet boundary
= conditionA(x=0,) on the amplitudeA. We consider situa-
Ve 7o b= [ Mcony 2.6 t?ons in whichA(x=0t) is the result of a statistically_sta-
fom J tionary process; see Sec. IV A for a model. Thus, with the

bulk forcesf(x,t) being also statistically stationary we re-
being larger than 2. It should be mentioned that the ampli-StrICt our investigations to th_e Iong-Ume Stat'St'C"f‘"y station-
tude equation approximatiof2.5 of uC. . describes the ary_ﬂuctuatlons oﬂ(x,t)—lm_ual transients occurring in ex- -
' Meonv & . lperlments after, e.g., changing control parameters have died
boundary between absolute and convective instability resul o

: L . ut. Under these circumstances we found it convenient to
ing from the full hydrodynamic field equation8,37] very perform part of our analysis in frequency space. After a tem-

well in the_ RB and TC systems for the small Reynolds num—poral Fourier transformation,
bers considered here.

Thus, the convectively unstable regime investigated here i
characterized by € u<pug,,, Or, equivalently, by the re-
duced group velocity

A(X,w)= Jm dte “tA(x,t), (3.1

C. Stochastic amplitude equation

The starting point of most theoretical approaches to de- . . .
scribe the effect of thermal noise on macroscopic hydrody:[he stochastic C.GLE bgcomes an ordinary, second-order, in-
namic pattern growth is the Langevin concept of Landau an@omogeneous differential equation
Lifshitz [27]. Therein the linear hydrodynamic field equa-
tions are heuristically supplemented by Gaussian distributed
statistically stationary stochastic forces with zero mean. =f(X,w), (3.2a
Their two-point correlation functions reflect the isotropy and
translational invariance of an unbounded system and theiwhich is to be solved subject to the inlet boundary condition
frequency and wave vector spectra are white. Projectiod\(x=0,0). A condition on the derivative oA at the inlet or,

[To(—iw+vdy)—(1+ico)u—(1+icy) E202]A(X, )
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equivalently, on the behavior @& for x— + o follows from
a physical requirement discussed in Sec. Ill A below.
For later use we rewrite the CGLE in the form

—(1+icy) E5(0x— K ) (dx— K ) A(X, @) = (X, ),
(3.2b

which displays the spatial eigenvalu&s , of the CGLE

explicity—in the solution of Eq(3.2) there appear contri-

butions of the forme'** ande'®2X, whereK , , are the com-

plex w-dependent characteristic exponents, i.e., spatial e

genvalues of Eq(3.2):

£oV1+icKi=*i(1—icy) uon— (1+ico)u—iwm
2

—iV(1—icy)pony

(3.3
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O2A(X)— — K2A(K) +i (a4 +HiK)A(X)|y—o  (3.8b
the Laplace transformed CGLEB.2) reads
(L+icy) &5(K—Kp)(K=K)A(K,w)
=i(1+icy) &l dx+i(K—Ki—K3)JAX, @)|x—0

+f(K,w). (3.9

iI_ts mathematically formalphysically unrestrictedgolution

i[ax+i(K—Ki—=K)JA(X,)[x=0
(K=K (K=Kj)
N f(K,w)
(1+icy) €5(K—Kp)(K=Ky)

AK,w)=

(3.10

The physically relevant characteristic exponent that controlg yntains poles in the compléd« plane atk; and atK.

the spatial growth of vortices in the downstream direction is

Now in the physical solution the residue of the pole at

K1, whereas the second eigenvalue of the CGLE is such that,, nas to vanish, i.e.,

ImK,<0 for all « and allw.

ImK(w; ) is for u<0 positive so that the spatial
growth rate—ImK; is negative, implying spatial decay of

each frequency mode. For u>0 selective amplification of
frequency modes out of a finite bard <w<<w, occurs:

IMK 1(0;0<u<uén)<0 for o <ow<w, (3.43
IMK(0;0<u<ué)>0 foro<ew_ and v>o, .
(3.4b
The band limits for amplification are
row-=*+2\(1+ ) uulot (C1—Colp.  (3.5)

ImK; has a quadratic minimum at the frequency
wm=—(Cot+Cy)ul o, (3.6

which is, due to the smallness of andc,, in general lo-

lim [(K—K»)A(K,®)]=0.
K—Ky

(3.11

Otherwise there would be a contribution-e'2* for
X— +o giving rise to spatial growth and a divergence of
A(X— +%,w) even for subcritical drivinge<0. The physi-
cally motivated requirement that there is no growtle'<2*

for x—+o is equivalent to selecting the “retarded” or
causal Green function in the solution of the CGLd. Ap-
pendixes A and B)L Therein the solution is represented by a
superposition of “waves” that propagate the frame co-
moving with velocityv) outwards, i.e., away from a local-
ized perturbation source- §(x—Xg) 8(t—tp) that creates a
perturbation pulse akg, to. For u<0 the “waves” are
damped while for & u< ug,,, they grow in the downstream
direction within the frequency ban@.5). On the other hand,
the “advanced” Green function describes inwards propagat-
ing waves~ e'lKa(@)x= ol that create the pulse &g, to. They

cated close taw=0. Thus, the frequency mode with largest Would cause even for <O a divergence oA at x— + .

spatial growth isw,.
For plots of —ImK; versusw see, e.g9.[29], Fig. 1 and
[8], Fig. 14. The relations to our exponelt areiK =«

[29]=p [8].

A. Spatial Laplace transformation
We have solved the CGLE.2) with the Green’s function

method and, equivalently, using a spatial Laplace transfor-

Note that the requiremeri8.11) implies that for a given
forcing f(x, ) the initial sloped,A(X,)|x—o of the ampli-
tude at the inlet is fixed by the inlet valdgx=0,0) and the
forcing f(K,,w)=—i[gdxe 2f(x,w). From Egs.(3.10
and (3.11) one obtains the relation

f(Kz,(x)) _

(= IKDAX @)lmot (5=

0. (3.12

mation. The latter method most clearly displays the influenceysjng this restriction to eliminate the slope in E8.10 the

of the inlet boundary properties on the solution. Thus, wephysical solution of the CGLE can be written as the sum of
start with the latter method here and present the relation tgyg terms:

the former in Appendix A.

We use the spatial Laplace transformation AK,w)=Ain(K,0)+Ap(K, o). (3.133
A(K)=—iJ dxe *A(x) (K compley. (3.7 Here
O An(K,w)= AX=0) 3.13
Here the second arguments-or t—of A is suppressed. Us- in(K, @)= K—K; (3.139

ing the transformation properties
is the contribution from the inlet fluctuation&(x=0,w)
while

9 A(X) = TKAK) +FIAX) |y o, (3.8a
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A (K )= f(K,0)—f(K;,0) 313 oA _iKOA i fo
O e KK (K- Ky &% Ao =IKIAT T s
is caused by bulk forcing. In real space the solution reads =iK? Ao+ (1+];Z ) (317
A(X, @) =Ain(X, @)+ Ag(X, ), (3.143 ok
where since f(K,,w)= —f02w5(w)/Kg for constant forcing. We
have checked the validity of E¢3.169 also by direct nu-
Ain(X, @) =A(x=0,w)e ¥ (3.14n  merical integration of thénonlineay CGLE.
and C. Correlation functions
i Here we investigate the frequency spectrum
Ab(x,(l)):

(1+icy) €5(Ki—Kp) - o
C(x,w)zﬁ d(t—t")e ) c(x,|t—t'|) (3.18

% fxdx/(eiKl(x—x’)_eiKz(x—x'))f(Xr'w)
0

of the time-displaced autocorrelation function

C(x,[t=t']) =(AXDLAX,t)]*) (3.19

of amplitude fluctuationsA(x,t) at the same downstream
positionx. Since the semi-infinite system with through-flow
Note that the bulk part vanishes at the inlet boundaryjs spatially not translational invariant the correlatids19)
Ap(Xx=0,0)=0. depend explicitly on the positior. On the other hand, the
statistical stationarity of the forcing processes in the bulk and
at the inlet causes a temporal dependence only|tvid’|.
gsing this property one has

— (eile—eiKZX)Jde'e_iKZX’f(x',w) )
0

(3.149

B. Digression: constant bulk and inlet forcing

In this subsection we make a digression to investigate th

special case (A(X,0)[A(X,0")]*)

278(w—w'")

C(x,w)= (3.20

f(X,w)=27d(w)fy, AX=0,w)=276w)Ag (3.15

of constan{deterministi¢ forcing f(x,t) = f, in the bulk and
constant inlet boundary conditioA(x=0)=A,. This in-

We consider inlet fluctuationd(x=0,w) that are deter-
mined by forces operating outside the bulk fluid volume, for
vestigation is useful and instructive for two reasofis:Ilt ~ instance, by fluctuating forces in the upstream part of an
allows one to check the general soluti¢14) for a special ~experimental setup. Thus, in the convectively unstable re-
case that can easily be solved analytically in a direct waygime the contributiom,(x, ») (3.149 due to bulk forcing is
without Laplace transformation and that furthermore can eag4dncorrelated with the inlet fluctuatioss(x=0,w) so that
ily be solved numerically(ii) It gives insight into the way
the initial sloped,A|,—q, inlet value Ay, and bulk forcing
fy are tied to each other.

We consider in this subsection the stationary solutionTherefore
A(x) of the CGLE, i.e.,A(X,w)=27é(w)A(X). Then Eq.

(A(X=0,0)[Ap(X,®")]*)=0=(Ain(X, 0)[Ap(X,0") ]*).
(3.2)

(3.14b gives C(X,0)=Cj(X,w)+ Cp(X,w) (3.223
0
Ain(x)=Age' 1 (3.168 s the sum of correlations
and(3.149 becomes Cin(X,0)=e"2"MK1XD () (3.22b
_ 0 _ ik of the contributiorA;,(x, ) (3.14b caused by inlet fluctua-
Ao(X) (1+i01)§(2)K(1)K(2)(1 e (3.168 tions and of correlations

with K{=K;(0=0) andK9=K,(w=0) given by Eq(3.3).
The complete solution reads

AX) = i)+ A3 = AP (1,

(1+icy)
(3.160

Here we have used fdic,)é2KK9=—(1+ico)u. The
physically motivated restrictiofB8.11), (3.12 on the slope at
the inlet becomes in our special case

Cb(X,(l)):

F 1 1
2(1+c) &K — K2 | ImKy  ImK,
1 1

+ — —
ImK; ImK,

) e—2 ImK 1 x

|

(3.229

I
K] K2

i
+
KX —K,

)ei(Kl—KZ)x

1
4 R{(zlsz
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of Ay(X,w) (3.149 caused by bulk forcing. Here 1 (4| 1 1 1 )
— 2 m * - -
N (AX=00)[AK=00")]*) [K1— Ky K¥—K, ImK; ImK,
(0)=Cih(x=0,0)= 278(w—w') B -1 1 1 3.2
(3.23 T K= K2 | ImK, | ImKy) (3.28

is the fluctuation spectrum of the inlet amplitude. The ex-

ression(3.229 for
P ( 0 Equations(3.22) for the spectra of amplitude fluctuations

(Ap(X, @)[Ap(X,0")]*) and their largex limiting behavior are the central result of
Pmo—w') (3.24  this paper. It allows one to assess the influencexternally
generated inlet fluctuations and of bulk stochastic forces

is obtained directly from Eq(3.149 by using the force cor- Separately.

Cb(X,w)=

relations
(f(X,0)[f(X',0")]*)=6(x—Xx")275(w—")F. (3.295 IV. INLET AND BULK GENERATED FLUCTUATIONS
Let us briefly discuss the smadland the larges behavior Here we first introduce a simple model for the frequency

of C(x,w): Since Cy(x=0,w)=0 one has SPectrumD(w) (3.23 of inlet fluctuations of the amplitude
C(x=0,0)=C;,(x=0,0)=D(w). Furthermore,C;, varies A(x=0). It allows one to make quantitative estimates of the
linearly andC, quadratically inx close to the inlet. importance of their contribution€;,(x,») (3.22b relative
The largex behavior is physically more interesting since to those of the bulk generated fluctuatiddg(x, ) (3.220.
it tells how and which frequency modes are amplified. Here
one has to distinguish the two casgés ImK,;>0 and (ii)
ImK ;< 0. Case(i) holds for allw if ©<0 and forw outside A. Model for inlet fluctuations
the band ¢ ,w,) of growing frequency modes i.>0. In Ref.[29] D(w) was estimated by projecting transverse
For these damped modes the autocorrelation approaches @bmentum current fluctuations in thermal equilibrium onto
large distances from the inlet the limit value the critical mode of the hydrodynamic field equations. These
fluctuations were assumed to be advected towards the inlet
) F 1 1 . L .
lim C(x,w)= — 2( — ) from an upstream part<<O without deterministic driving,
2(1+cp)&|Ki— Ky 1 ImKy  ImK; w=—1, and to enter the main supercritical part of the ex-

(3.263 p_)erimental cell, e.g., via a porous plugat0. Thus, the

The fluctuations of these damped modes are influenced an%aylagh number Ra or the Taylor num&rn the upstream
art was taken to be zero [29]. In experiments, however,

sustained at large distances from the inlet only by the bull®

forcing. The limiting value(3.263 coincides with the auto- one.often has a.n ups.tream se(.:tre.rl}<x'<.0 to the Ieft'of
correlation the inlet atx=0 in which the fluid is equilibrated at a finite

subcritical drivingu<0. In the remainder of this paper we
« dk mark quantities characterizing such a subcritical upstream
Colw)= f_mﬂ part of the system by an underbar.
Babcock, Ahlers, and Cannell8] have numerically
F solved the stochastic CGLE for such a setup with
(1+iCl)éng—,u,(l-FiCO)—i(w—vk)7'0|2 |__=O.1,,L_L= —0.1, and boundary ConditiOA(X: _|__,t):0.
We consider a situation whete is sufficiently large. Then
(3.26hH . - . .
perturbations, e.g., from the pumping machinery that are
of amplitude fluctuations in an infinite systempo<x<o,  SWept atx=—L into the subcritical upstream part of the
that is translational invariant without inlet boundary condi- apparatus have decayed by the time the fluid reaches the
tions. inlet, x=0, of the supercritical part. Thus, one ideally has at
In case(ii) of ImK;<0, i.e., foru>0 andw_<w<w, x=0 only fluctuations in the hydrodynamic fields that are
there is exponential growth. Then the correlation function issustained by thermally activated fluctuating forces. The most
dominated for larges by important field fluctuations are those with wave numbers
close to the critical one and with spatial variation in the
directions perpendicular to the through-flow similar to the
2(1+Ci)§3|Kf —Ky|? critical mode. We approximately describe the dynamics of
the amplitude of these modes with the linear stochastic
CGLE (2.7), now, however, for subcritical drivinge<<O0.

1 1
X ( ImK; + ImK2> Therein, the spectrum of amplitude fluctuationxat0 that
are generated at subcritical driving by thermal forcing
To derive Eq.(3.27) from Eq.(3.22 we have used the rela- f(x<O0t) alone—t is large—is given by Eq(3.26 with
tion pu=u<0:

X— 00

X
|

C(X—o>,w)—

D(w)—

e—Z Imle_ (327)
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g

The total spectral power of these noise generated fluctuations
of the amplitudeA(x=0) of the critical mode at the inlet

10

1 1
ImK;  ImK,

4.9
2(1+ D) £lK. = K,f?

10

o

4.2

—y
o

Dt—o—f & )=
R B 2

increases with increasing driving in the subcritical upstream

section and diverges in the absence of nonlinearities in Eq.
(2.7) at the critical drivingu=0. Thus, the estimatgl.l) is

only realistic for a situation where the noise generated am-
plitudes in the upstream part are small enough to neglect the
nonlinear contributions in the hydrodynamic field equations,

— oo

C(x,w)&,/F

i.e., for 4 not too close to zero. If that is the case then a
variationec1/y— w in the inlet contribution should be experi-

mentally observable.
In Fig. 1 we show the inlet spectrub () (4.1) normal-
ized by 7D (t=0) versus reduced frequeneyr, for several

0.0 1.0

0T,

0.5

FIG. 2. Downstream evolution of the reduced contributions
Cin(X,w) (3.22h and C,(Xx,w) (3.220 to amplitude fluctuation

subcritical upstream control parameters as indicated. The irspectra. Being practically symmetric im for our parameters
let spectrunD (w) is dominated by the term 1/IKy. It con-  Cinéo/F (left side andC,,&,/F (right side can be continued sym-

trols theu variation of the peak height and of the peak width metrically to the other side. Inlet fluctuatioy(x=0w)=D(w)

- i are taken from our model with subcritical upstream driving
of D(w) and it governs the strong enhancement of thosg,— —0.1. Parameterf89] are Re=2, = uS,,/2=0.03.
modes aroun@ =0 that can grow in the supercritical down- ~

stream part of the system. . . . .-
Finally we would like to comment on the objectigps] &1y X in the upstream section that is sufficiently far away

against using, in a system without translational invarianceffom L one should observe fluctuations as in an infinite sys-
thermal equilibrium spectra for inlet fluctuations that cometem. For the stochastic CGLE this is reflected by the equality
from the u=—1 upstream part in29]. This seems to be of Egs.(3.263 and(3.260. But the corresponding property
well justified in view of the fact that downstream forces do holds also for the full linear field equations with through-
not influence upstream locations—downstream generateow.

perturbations cannot propagate upstream if the through-flow

is smaller than the convectively unstable threshold. Thus for
B. Comparison of inlet and bulk generated fluctuations

In Fig. 2 we show the downstream evolution of the spec-
tral contributionsC;,(x,w) (3.22h and Cy(x,w) (3.229
from inlet and bulk forcing, respectively, to the total spec-
trum of amplitude fluctuations. The contributions are re-

6
duced byF/ £, measuring the forcing strength. The inlet fluc-
E tuations C(x=0,0) =C;,(x=0,0)=D(w) are taken from
i the model of Sec. IV A with a subcritical upstream driving of
o4 #=—0.1. The Reynolds number is R and the superecriti-
zg cal downstream driving ig= ug,,/ 2=0.03. For these pa-
Q

rameters the band limit8.5 of amplification InK;(w)<0

are w_79=—0.084 andw, 79=0.086, respectively. While
the logarithmic scale of the ordinate tends to obscure the
boundaries between growing and decaying frequency modes
the left borderw _ of the amplification band can be identified

FIG. 1. SpectrunD(w) (4.1 of amplitude fluctuations at the
inlet normalized byrgD(t=0) vs reduced frequencyr, for sev-
eral u. Parameterg39] are for Re=2.

in the plots ofC,,(X,w) of Fig. 2 by their crossing point—
there, C;, spectra at differenk have the same value for
ImK;=0 .

The bulk contributionCy, that vanishes at the inlet is at a
distance of one correlation lengtfy still smaller than the
inlet contribution. Then, with a growing downstream dis-
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. finds for the parameters of Fig. 3 that the bulk generated
-7 downstream fluctuation€,, dominate over the fluctuations
-~ that are swept into the system through the inlet whenever the
- upstream drivingu<—0.025. If the downstream driving
s is smaller than in the example of Fig. 3 then the size of inlet
PR o® fluctuations that would ensur€;, to be comparable t&€,,
P SA for largex would have to be larger—i.ex, would have to be
5?102 : 7 ) E even closer to zero.
i‘ Y, l Thus we conclude thaypically the large-(small) x be-
3 / 5 havior is governed by bulkinlet) fluctuations. However, our
z . upstream model clearly shows that in appropriately designed
experimental upstream sections—withbeing long enough
to avoid influence of the pumping machinery operating at
10° - Xx=—L—one can tune and enhance the inlet noisg=ab

almost arbitrarily by selecting the subcritical upstream driv-
ing » accordingly. Finally we would like to stress that our

. . model for inlet fluctuations contains only internal thermal
0 10 20 80 40 fluctuations generated in the subcritical upstream part. It
X does not contain other perturbations, e.g., from the pumping
machinery, that might in an experimental setup be advected
FIG. 3. Downstream growth of spectral peaks. They are locatedg\yards the inlet. Their contribution to the inlet fluctuation
very close to w=0 for our parameters[39] Re=2,  gnectrym would have to be added to our model spectrum
M= Preon/2=0.03. Thin lines shovCin(x,w=0)&o/F coming from -4 1) “However, since our general formulas in Sec. Il have

inlet fluctuations(Sec. IV A) obtained for different subcritical up- b . . . . .
2 een derived for arbitrary inlet fluctuations with spectrum
stream drivingu. For the SBH resulCggp(X,0=0)¢&y/F (B12) 5)(“’) they also apply to syuch a situation. P

represented by_the thick dashed line the inlet fluctuations are fixe
by construction viau,Re (cf. Appendix B 3.

S V. CONCLUSION
tanceC, becomes larger. Ax=20¢, the bulk contribution

has almost reached its largesingle exponential growth as- We have investigated the effect of inlet fluctuations and
ymptoticsce™? MKu(@)X There the contribution t€, from  bulk stochastic forcing on noise sustained pattern growth in
the last termoce/[Xu(@)=Ka(@)lx jn Eq. (3.229 is already semi-infinite systems, €x, with through-flow in the con-
small. vectively unstable parameter regime. We have used a 1D
That can also be seen in Fig. 3. There we show for theCGLE that is appropriate for forward bifurcating structures
same supercritical downstream driving= ug,,/2=0.03  in order to quantitatively compare both effects on the statis-
that was used in Fig. 2 the downstream growth of the spedical dynamics of the downstream growth of the complex
tral peakCy(x,w=0) in comparison with the peak height pattern amplitudeA\(x,t).
Cin(X,0=0) of the inlet contribution—for our parameters  To that end we have solved the linear stochastic CGLE
the spectral maxima are located practicallyat 0. C;, was  Subject to arbitrary, statistically stationary boundary condi-
evaluated for several subcritical upstream driving values ofions at the inlex=0 in the presence of bulk additive forc-
w as indicated. The dashed line label@gk, is discussed in  ing f(x,t) with a spatial Laplace transform. This method is

Appendix B3. Thus, for the values gf in Fig. 3 the bulk well suited for the semi-infinite geometry: inlet and bulk
contribution rapidly outgrows the inlet contribution. A simi- forcing are easily dealt with separately since they both ap-

lar observation was made also in the numerical treatment df<&" explicitly and ac_id|t|ve|y via boundary_ and mhomoge-_
Babcock, Ahlers, and CanndB]. neous terms, respectively. Furthermore, this approach easily

The slope of the straight lined;, and of the asymptotics aIIow_s one to _|dent|fy the contrlbutlo.ns to the general math-
of C, andCaegy, is given by—2 IMK®, where the superscript ematical solution from a pole da(tz_(w) in the comple_x wave-
0 é’ ¢ fﬁ”t the ei @ is taken ato=0. In the f number plane that have to be discarded on physical grounds
Indicates that the e|genvqt{a_ IS taken aw=0.Inthefar g, .o they would cause growth even for subcritical control
downstream region the ratio of the spectral maximaCgf

: o parameters. The physically motivated restriction is equiva-
and C;, approaches according to E¢8.27) the limiting lent to choosing the “space-retarded, causal” Green function

value that describes propagation away frqand not towardsa
— localized perturbation pulse. The restriction imposes a rela-
. Ce(X,w=0) ) ) o
lim Cxoz0) tion between the inlet conditions ok andd,A on the one
x—ex Cin(X,@=0) hand and the bulk forcing on the other hand. Thus, for
F/D(w=0) 1 1 example, the inlet derivative,A is fixed in the physically
=— o0 2( 5+ 0). relevant solution of the second-ordén spacg¢ CGLE by
2(1+c)) &lK" — K37\ ImKY  ImK; A atx=0 and the bulk forcing.

(4.3 We have investigated the effect of arbitrary statistically
stationary inlet fluctuations that are independent from the
If one uses folD(w=0) the result(4.1) of our model one bulk stochastic forces and that are, e.g., advected through the
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inlet at x=0 into the systenx>0 with the through-flow o .

from an upstream subsystexx<0. Then we have consid- G(X,Xo;w)=f dte " IG(x, X0t —tg),  (A2)
ered a simple model for such an upstream subsystem that o

contain:?‘ thermal fluctuations only: it is held at some subpriti15 conveniently written as the sum of two contributions:
cal driving <0 and the thermally generated fluctuations _

that are advected towards the inlet are described by the sto- G(X,Xg; 0)=€eK1XG(x=0Xy; )+ G(X,Xg;w). (A3)
chastic CGLE. Thusy allows one to tune the strength of the
advected inlet fluctuation spectrum.

If the driving u in the downstream paxrt>0 is subcritical
then all frequency modes are damped. Then the correlatio
spectrumC(x,w) of amplitude fluctuations is at large down-
stream distances from the inlet no longer influenced by the a(x,xo;w)= . 5
inlet fluctuations ak=0 andC(x,w) approaches the trans- (1+icy)&p(Ki—Ky)
lational invariant spectrum of an infinite system. However,
for supercritical downstream driving>0 inlet-forced as
well as bulk-forced amplitude fluctuations are growing in the + 0(xg—x)e'K2x~%0)] (A4)
downstream direction for frequencieswithin a finite band. _

Typically the contributionCy(X,w) caused by the additive is G(x=0x,;w)=0. The physical solutiof3.13 of the lin-
bulk forces to the correlation spectrudi(x, ) of amplitude ear stochastic CGLE can then be written in the form
fluctuations at the downstream locati@nrapidly outgrows

with increasingx the contributionC;,(x,w) that follows A(X w):f
from the upstream model for inlet fluctuations. In the large- ’ 0

x regime far from the inlet both contribution€;,(x,w) as

well as Cy(x,w), grow ~e 2 MKue)X with —Im K,>0  and

having a maximum close te=0. But the prefactors il . .

andC,, are ;uch j[hat there'the amplitude fluctuatlpn spec- A(x,t)zf dxof dteG(X,Xg;t—to) f(Xo,t). (AB)
trum C(X, w) is typically dominated by the bulk contribution 0 —o

Cp(X,w). However, we have shown with our model how to

realize experimental setups with subcritical upstream drivingrh€ Xo integration covers the whole spatial domaige=0.
where the inlet fluctuations could be well controlled and wellCausality implies contributions to come only from times
defined—uninfluenced by, e.g., the pump|ng machinery_—oo<to$t prior to the observation time The inlet condi-
and tuned to be large enough to dominate over the bulk pafton on G is defined by the requirement that for any given

Then the first term propagates the inlet condition in the
downstream direction and the boundary condition on the
Rulk contribution

[ _ ei(le-szo)

+ 0(x—Xo)e'K1x o)

©

dxoG(X,Xg; w)f(Xg,w) (A5)

Cp. f(Xg,w) the integral

Finally, a detailed comparison with a recent approach of .
_SBH _shoyved that thg boundary condition that they use at the dXG(x=0xXg:®)f(Xg,w)=A(X=0,0) (A7)
inlet implies fluctuations there that are strongly correlated 0

with the bulk forcing. This enhances the amplitude fluctua-
tions of the growing modes and thereby tends to overestyields theimposedinlet condition A(x=0,w) that can be
mate the effect of thermal bulk forcing. chosen arbitrarily and in particular independentf of

For the sake of comparison with the Green function
Ggpy Used by SBH(cf. Appendix B) we mention thaiG
[Eg. (A3)] can be rewritten as the following decomposition:

This work was supported by the Go West program of the LN KX _ R .
EC and by the DAAD. One of u¢A.S) acknowledges the G(X,Xg; @) =" [ G(Xx=0Xg;®) ~ Ggpu( ~Xo; )]
hospitality of the Universitades Saarlandes. We thank A. +Ggpy(X—Xo ). (A8)
Recktenwald and P. ®iel for help with the figures.
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APPENDIX A: GREEN FUNCTION

G X—Xg;w)= -
We are interested in the Green functiGigx,xq;t—t,) of sH(X ™ Xo;®) (1+icq)&5(K—K

the CGLE as a solution of

[6(x—xg)eK 10
2)

+ 6(xo— x)e'K2xx0)] (A9)

[To(d+vdy) = (1+ico) w—(1+ics) E505]G(X, X5t —to) is the Green function used by SBH and
= 8(X—Xg) 8(t—1p) (A1) i
Ggp( —Xg )= - e
. . N SE T (Lic) £5(Ky—Ky)
subject  to an arbitrary boundary  condition (A10)
G(x=0xq;t—1ty) at the inlet. Because of the semi-infinite
geometryG depends orx and the locatiorx, of the § pulse is its value at the inlet. Note that the ‘“space-retarded,
separately. The temporal Fourier transform@&f causal” nature of the Green function can readily be read off

_iKZXO
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from Eq. (A9). It describes spreading off—not contraction i
towards—the perturbation pulse x§: the first(second ex- GspHly; @)= (1+ic) (K —Ky)
ponential in Eq(A9) accounts for the spreading in the down- 7S0i ™ 2
stream(upstream direction with complex wave numbét;
(K,). Downstream growth occurs for frequencies with ) )
ImK 4() <0 while the spreading in the upstream direction isWith Y =X—Xo by temporally Fourier transforming the Green
always damped given that K3 <0. function

Since the linear operator appearing in the CG(E2), o(7) _
i.e., the square bracket in EqALl), is x(dy—iK;) Ggpy(y; )= ——eltticonmn
X(dy—iK,) it is clear from Eg.(A8) that bothG and 7o
Gggy Solve Eq.(Al), however, with different inlet condi-
tions.

X[6(y)e Y+ o(—y)e], (B

fw dk 14 2k27
X ﬂczex —(1+icy) & T_o

APPENDIX B: COMPARISON WITH SBH +ik(y—v7) (B2

1. Green function Gsgn(X—Xo; @) given in Egs.(C18), (C19 of SBH for 7=t—1t,>0. Invert-

Here we derive the expressigA9) for ing the sequence of integrations, one obtains

GSBH(y;w)zi i %e“‘yfmdrexr{iw7-+(1+ico),ul—(1+icl)§§k21—ikv7
ToJ —2 0 To To
_L[ %e”‘yfmdrexp{—(1+icl)§(2)(k—Kl)(k—Kz)l}:;Zfo %L.
) _2TT 0 To (1+|C1)§0 _ 27T (k_Kl)(k_Kz)

(B3)

The above integral along the rdabxis can be calculated as Using \/r as an integration variable one finds with Eq.
a contour integral in the compléxplane with the method of (3.472-1 of Gradshteyn and Ryzhik38] that
residues. Foy>0 (y<0) one has to close the integration
contour in the uppeflower) complex half plane.

1

The pole aK, contributes only foly<0 since it lies with GspH(Yiw)= ;e“y_ﬁm, (B5a)
ImK,<0 always in the lower half of the compldxplane. It
yields the second term in E¢B1). The pole ai, lies for | i
subcritical <0 in the upper half of the complek plane. It
causes the termre'k2Y for y>0 in Eq.(B1) to come from or
the contour closed in the upper half of the compkeplane. a= —_0, (B5b)
However, whenu>0 this pole crosses the reklaxis and 2(1+icy)&o
moves into the lowek plane for frequencies within the band
(3.5 of growing modes. In order to retain its contribution in \/ , loTgt+(l+ico)u
Eqg. (B1) for y>0 one has to deform the original integration B=\/a— (1+ic)& (BS¢)
path along the reak axis into a contour reaching into the V=0
lower k plane that enclosds; such that this pole remains in . 2
the interior. y=2p(1+icy)&p. (BSd)

Alternatively one can first perform theintegration in Eq. ) ) )
(B2) and then Fourier transform the result: Expressingy, 8, andy in terms of the eigenvalugs; » [Eq.
(3.3] and using the fact thaty?/y=sgn(y) one verifies that

Eq. (B5) agrees with Eq(B1).

1
G Tw)=
N cEr

2. Amplitude fluctuations Aggy(X,®)

xfOCdT ioT+(1+icy) .
—expioT iCo)u—
0 \/; ° MTO

(y—v7)?7

TaaTic)gr o

The amplitude fluctuations of SBH are expressed with the
help of the Green functio®gg as

s} t
ASBH(Xat):fO dxof_ dtoGgpr(X—Xg;t—to) f(Xo,to)-
(B6)
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Here we deal with the statistically stationary situation where
the stochastic forces have been operating since the time 15
to=—. On the other hand, SBH enforce the initial condi-
tion Aggn(X,t=0)=0 at timet=0 by integrating in Eq(B6)

only from ty=0 to to=t—cf. Eq. (C.20 in [25]. Since we E’W
are interested, however, in comparing thag-timeproper- 2
ties of their results with ours this difference does not play a 1
role—the formulas labeled with the subscript SBH in this S 5

and the next subsection refer to the long-time limit of the
SBH results in25].

In frequency space the long-time amplitude fluctuations 0
of SBH follow with Eq.(B1) to be

i w 150
A X,w)= - Q
seH )= e ) 8K, —Ky) s Y
B L ]
X . = | -0.2
X f dxoe K100 (g, ) % 7\
0 O 50 W 0.4 .
+j dXOGiKZ(X_XO)f(XO,w) . (B?) 0 T L I I 1
X -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Note that the SBH solution is a very special one in the sense

that it assumes the long-time amplitude fluctuations at the G, 4. Reduced correlation spectra of amplitude fluctuations at
inlet to be of the form (@) inlet, x=0, and(b) further downstreamx=10¢,. Parameters

) [39] are Re=2, u= ul,,/2=0.03. Full lines show our results using

I inlet fluctuation spectréSec. IV A) obtained for different subcriti-

Aser(x=0.0)= (1+icy) &5(K1—Ky) cal upstream drivingu. Inlet fluctuations entering into the SBH
result(dashed lingsare fixed by construction via,Re(cf. Appen-
X fwdxoe*‘KZXOf(xo,w) dix B 3).
i . . f(Kz,w)
—f(Kz,0) 89) '(07x_|K1)ASBH(X,w)|x:o+mzoy (B11)

(1+icy) &K1 =Ky
discussed in Sec. lll A, which prevents unphysical behavior
Thus, the inlet boundary condition is not treated as an indefor x— oo,
pendent quantity that can be imposed on the solution of the
CGLE. Rather the inlet boundary value féris related to 3. Correlation function Cggp(X, )

and determined explicitly by the bulk forcirfgxy,w). How- Using (Agar(% @) [ A, 0")*) =27 8(

ever, when we impose in ougeneral solution (3.14) the ")Cear(X.w) 1o evaluate the correlation spectrum one
special inlet conditionA =0,0) of SBH we get the ¢ J-sBHMLE
pecial | ltionAsg(x=0.0) we 9 obtains from Eq(B7)

same result as SBH. In fact, our general solut{@ri4) can

be written in the form =
. Cspr(X,0)= N A 2
A(X, ) = Aggr(X, ®) + €K X[ A(x=0,0) — Agr(X=0,0)] 2(1+c7)&o|Ki—Ky|
(B9)
X (1—872 ImKlX)_
with an inlet boundary conditioA(x=0,0) that is still free ImK, ImK,
to be chosen. (B12)
Finally we mention that the derivative of the special SBH
solution at the inlet, with inlet correlations being given by
LY CoaH(X=0,0) - 1 (e13
- x=0,w)= .
FxAsH(X, ®)|x=0 (1+ic1)§§(K1—K2) SeH 2(1+C§)§6‘|K1_K2|2 ImK,
3 . These correlation spectra have to be compared with our re-
X | dxpge” "20f(xo,w) sult, Egs. (3.22 and (3.23. Note thatF=2¢&,moF3" as
0 . ) A
mentioned already in Sec. Il C.
=iK )Agp(X=0,0), (B10) To that end we show in Fig. 4 amplitude fluctuation spec-

tra at the inletx=0, and further downstreanx,=10¢,, for
is such that also the SBH solution obeys the relat®i2, Re=2 andu=ug,,/2=0.03. Full lines show our results us-
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a4 g - _
Com )= D) S KT K,
1 1 —2 ImK1x

ia I | X ImK1+ Isz) e X, (B15H)
oF Thus, if one just replaces in E¢B15) our inlet spectrum
ﬂi D(w) by Cggn(x=0,0) [Eq. (B13)] one does not recover
151 the SBH result(B14) since the SBH spectrum was derived
=2r A for inlet fluctuationsAggn(X=0,0) [Eq. (B8)], which are
E correlated with the bulk forcing while our inlet boundary
,é% condition onA is chosen to be externally determined and
o thus independent of the bulk forcing.
3‘;1 r 1 These additional correlations between inlget-0, and
o downstream positionx>0, that are present in the SBH so-

lution enhance the SBH spectra compared to our spectra.

Consider, e.g., the cage=—0.05 in Fig. 4 for which our

oo'0 02 oz o5 o8 10 inlet fluctuation spectrum is even larger than

Cspu(X=0,0). Nevertheless, the downstream amplitude
fluctuation spectrumCgg(X,w) rapidly outgrows our

FIG. 5. Ratio of spectral peak heights of amplitude quctuationsC(X’w)' The effect of this correlation enhanced downstream

. . rowth of SBH can also be seen in Fig. 3—compare the
according to SBH and to our work. The correlation spectra haveg . - _ . i}
almost reached their largeasymptotic form ak=20&,. Our spec- dashed line for the peak heiglisa(x,w=0) with our re

tra were evaluated using inlet fluctuatiof®ec. IV A) obtained for sult C(x,w=0) for M= —0.05.

W

different subcritical upstream driving. Inlet fluctuations entering 'I_'histﬁffect (]iant be mfe‘afurled quantitativtgl)ll, e.gv.v,tr?ybcom-
into the SBH result are fixed by construction yiaRe (cf. Appen- ~ P&ing the pretactors or the largeexponential gro e-
dix B 3). Parameter§39] are Re=2, = u,,/2=0.03. havior of Eq.(B14) with that of Eq.(B15). To that end we

ignore the imaginary coefficientsy andc, in view of their
smallnes$39]. Then the ratio of the spectral peak heights at
ing inlet fluctuation spectréSec. IV A) obtained for differ- @=0 has the form
ent subcritical upstream driving as indicated. The most -

CspH(X—°,0=0) M
important difference is that in SBH the inlet fluctuations are Coxmm.w=0) - =
determined by the bulk forcin§ with a spectrum(B13) that : 2(1-pw)(1-VN1-p)
is fixed by F, Re, andu whereas in our more general case N
the inlet boundary condition on the amplitudes still open. X—’l—‘”, (B16)
In the case that upstream fluctuations outside the main sys- Vi—p—plp

tem generate ouA(x=0,w) the latter is statistically inde-
pendent of amplitude fluctuations,(x,w) (3.149 that are
generated in the bulk by the random forcds i.e., N N
(A(x=0,0)[Ap(x,0")]*)=0 (3.20). =l pcon 0, =gl poon<0 - (BLD)
This different correlation behavior influences not only thedenote reduced control parameters. For not too largae
amplitude fluctuations close to the inlet but also the large- P ' a

correlation spectrum of the growing frequency modes Withratlo (B16) is close to 1. quever, whep approaphes 1 It
ImK ,<0. Only the correlation spectra of thiampedmodes becomes large. The coefficiertg,c,; remove the singularity

with ImK ;>0 are in both approaches the same for laxge present it'“_l m_Eq. (B16). In I:'g: > the ratio
Cepu(X—0,0) = C(X—00,0) = C..(w). Equation (3.26 CSBH(X,_w—O)/C(x,w_—O) of the peak heights of théull
SBH ’ ’ . . _ correlation spectra is shown at=20&, versus reduced
holds for the damped frequencies with >0 since at LA . . .
x—sco these modes no longer feel any influence of the inledownstream drivinge. This ratio differs only slightly from
. . . Ehe largex asymptoteB16) because of a small contribution
boundary condition. However, for thgrowing modes with from the last term in Eq(3.220.
ImK, <0, The inlet fluctuations resulting from the upstream part of
the system would have to be very large; iz would have to
be very close to zero in order to cause downstream fluctua-
tion amplitudes that are as large as those of the SBH ap-
F 1 @2 ImKyx proach. Furthermore, if thermal equilibrium fluctuations
2(1+c9) E5|K1—K,|? ImK g were causing the inlet fluctuations as described by the un-
(B14)  forced casew=—1 in our upstream model the discrepancy
would be even larger. Thus, in agreement with an assessment
made in the introduction di25] we conclude that the SBH
result overestimates the effect of thermal noise mainly be-
differs from cause the inlet boundary is not treated adequately.

where

Cspu(X—»,0)— —
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