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Noise sustained pattern growth: Bulk versus boundary effects
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The effect of thermally generated bulk stochastic forces on the statistical growth dynamics of forward
bifurcating propagating macroscopic patterns is compared with the influence of fluctuations at the boundary of
a semi-infinite system, 0,x. To that end the linear complex Ginzburg-Landau amplitude equation with addi-
tive stochastic forcing is solved by a spatial Laplace transformation in the presence of arbitrary boundary
conditions for the fluctuations of the pattern amplitude atx50. A situation where the latter are advected with
an imposed through-flow from an outside upstream part towards the inlet boundary atx50 is investigated in
more detail. The spatiotemporal growth behavior in the convectively unstable regime is compared with recent
work by J. B. Swift, K. L. Babcock, and P. C. Hohenberg@Physica A204, 625 ~1994!# where a special
boundary condition is imposed.@S1063-651X~97!02905-X#

PACS number~s!: 47.20.2k, 43.50.1y, 47.60.1i, 05.40.1j
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I. INTRODUCTION

Nonequilibrium extended systems that undergo a pat
forming instability with nonzero group velocity@1#—
whether the latter arises in open-flow configurations@2,3# via
an imposed through-flow@4–15# or internally from a bifur-
cation to traveling waves@16–18#—show a peculiar sensitiv
ity to perturbations in the so-called convectively unsta
parameter regime@19,20#. Therein initially spatially local-
ized perturbations superimposed on some basic unsta
macroscopically unstructured nonequilibrium state of
system are advected downstream by the group velocity.
multaneously they are selectively amplified@20,21# accord-
ing to the deterministic amplification mechanism that occ
near the pattern forming bifurcation@1#. Thus, advection spa
tially deconvolutes the pattern growth from its cause—
perturbation source. But the latter leaves its signature via
bifurcation-induced, deterministic amplification process
the spatiotemporal properties of the downstream grow
macroscopic nonequilibrium structures. The statistical
namics of fluctuations of these structures is easily detect
@5–8,10–12,17,18#, thus providing information about th
small perturbations that have triggered their growth.

The feasibility to distinguish the influence of differe
perturbation sources—e.g., those that are external to the
tem under study versus internal thermal noise—on the m
roscopic pattern growth in a very direct way has attrac
much research activity recently@6–8,10–12,17,18#. Here one
has to keep in mind that the deterministic bifurcation dyna
ics of the macroscopic structure forming instability det
mines which of the modes that a perturbation source emi
amplified and which one decays in the downstream direct
And as long as the mode amplitudes are still small each
the perturbation modes evolves separately and inde
dently: the bifurcation dynamics is initially linear with satu
rating nonlinearities being irrelevant, thus producing exp
nential growth with time and downstream distance.

Hence, in a system with group velocity in the positivex
551063-651X/97/55~5!/5509~13!/$10.00
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direction one expects that fluctuations generated near the
let boundary atx50 and/or perturbations that might ent
the system via the inlet are most important. They have
longest advection or amplification time to grow in the flo
before they reach a particular observation point at a do
stream locationx.0. Therefore a careful analysis of the in
fluence of the inlet boundary condition relative to the effe
of bulk ~fluctuating! forces is necessary, particularly in vie
of the fact that both sources cause exponential growth. S
an analysis should be able to shed some light on the prob
of whether in bounded experimental systems it is inter
bulk generated thermal noise that triggers and sustains
growth of macroscopic vortex structures in the convectiv
unstable regime or another kind of environment-produc
perturbation that might, e.g., be advected from the in
boundary into the bulk.

On the theoretical side the effect of noise on the patt
forming process has been investigated mainly within
framework of the complex Ginzburg-Landau amplitu
equation~CGLE!. It describes the slow spatiotemporal b
havior of the complex amplitudeA(x,t) of the critical mode
of the pattern that can grow first when crossing the bifur
tion threshold. Bulk thermal noise is incorporated in this a
proximation scheme by fluctuating volume forcesf (x,t) that
act additively onA(x,t) and that are derived@22–26# for
local thermal equilibrium conditions of driven systems fro
the linear Landau-Lifshitz equations of fluctuating hydrod
namics around global thermal equilibrium@27#. The problem
of the inlet boundary condition that arises with the CGLE
a finite domain has been addressed only in some ideal
way: Deissler@28# imposesA50 at the inlet. Lu¨cke and
Recktenwald@29# investigate the pattern growth resultin
from an inlet boundary condition that is produced by therm
equilibrium transverse momentum fluctuations that are
vected into the system atx50. Babcock, Ahlers, and Can
nell @8# have solved the stochastic CGLE numerically in
system that was augmented in the upstream direction, i.e
negativex by a small subcritical part and compared wi
5509 © 1997 The American Physical Society
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5510 55M. LÜCKE AND A. SZPRYNGER
imposing A50 at x50. Swift, Babcock, and Hohenber
~SBH! @25# consider solutions of the stochastic CGLE whe
the amplitude fluctuationsA(x50,t) at the boundary are
strongly correlated with the bulk thermal forcingf .

In this paper we first of all solve the stochastic CGL
subject to arbitrary inlet boundary conditions with a spa
Laplace transformation method. We investigate the influe
of thermally generated bulk additive forcing on the statisti
dynamics of downstream growing amplitude fluctuations
comparison with the effect of statistically stationary in
fluctuations that are independent of the bulk forcing. Furth
more, we use a simple model to estimate fluctuations tha
swept with an imposed through-flow into some experimen
systems via the inlet. This allows us to assess more qua
tatively the importance of such inlet fluctuations relative
bulk thermal forcing. Experimental setups to tune and c
trol the former are briefly discussed as well. Finally we co
pare our results in detail with the results of SBH.

Our paper is organized as follows: In Sec. II the line
stochastic CGLE with thermally generated bulk additi
forcing is briefly reviewed. The solution for the fluctuatin
amplitudes in frequency space,A(x,v), and their correlation
spectra are given in Sec. III. Section IV presents the mo
for inlet fluctuations and compares their downstream evo
tion with the growth of bulk generated fluctuations. Secti
V contains a summary. In Appendix A we present t
‘‘space-retarded, causal’’ Green function of our solution
the convectively unstable regime. In Appendix B we co
pare our results for the Green function, amplitude fluct
tions, and correlation spectra with those of SBH.

II. SYSTEMS

The systems that we have in mind show a continuous,
hysteresis-free, transition, say, from a spatially homogene
state to a spatially structured one. Thus, a spatially perio
solution branches in a forward bifurcation out of the ba
solution at a critical control parameter. The most intensiv
studied examples for such systems are the Rayleigh-Be´nard
~RB! problem of straight roll convection vortices in a flu
layer heated from below@1# or the rotating Taylor-Couette
~TC! problem of axisymmetric toroidal Taylor vortices in th
annulus between concentric cylinders of which the inner
is rotating@1,30#. But our investigation, being based on th
CGLE for such one-dimensional~1D! patterns, also include
other problems for which this equation captures the esse
parts of the pattern formation process. Nevertheless, we s
use in the remainder of this paper the terminology of the
or TC system. Thus, we consider in particular open RB~TC!
setups with an externally imposed horizontal~axial! mean
flow through a not too wide rectangular convective chan
~annulus between concentric cylinders!. Then the determin-
istic field equations show an oscillatory instability. Th
structureless, stationary basic flow without vortices is sta
for Rayleigh numbers Ra~Taylor numbersT) below a criti-
cal threshold Rac(Re) @Tc(Re)# that depends on the through
flow Reynolds number Re. At the critical threshold a stab
spatially extended, temporally oscillatory state of dow
stream propagating vortices branches off the basic state.
latter is unstable and the former is stable for supercrit
driving.
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We use the relative control parameter

m5
Ra

Rac~Re!
21 or m5

T

Tc~Re!
21 ~2.1!

to measure the distance from the onset of propagating vo
flow for ReÞ0 and of stationary vortex flow for Re50,
respectively. In this notationmc50, i.e.,

ec~Re!5
Rac~Re!

Rac~Re50!
21 or ec~Re!5

Tc~Re!

Tc~Re50!
21

~2.2!

is the critical reduced threshold for the onset of propagat
vortex flow. The shear forces of the through-flow slight
stabilize the homogeneous basic state, soec(Re) slightly in-
creases with Re@2,4,6–8,31#. Note that in the RB system we
consider so-called transverse vortices whose roll axes
enforced to lie perpendicular to the through-flow direction
the geometrical design of the rectangular convection ch
nel. So for not too large Re the critical wave vector of t
vortex patterns is oriented in both cases along thex direction
of the through-flow,kc5kcex .

A. Amplitude equation approximation

For small supercritical control parameters, 0,m!1, the
macroscopic vortex dynamics is governed by a narrow b
of near critical modes. This allows one to represent the
drodynamic fields within an amplitude equation approxim
tion @1# by a complex amplitudeA(x,t) multiplying the criti-
cal mode

w~x,r' ;t !5A~x,t !ei ~kcx2vct !ŵ~r'!1c.c. ~2.3!

Herew is, for example, a component of the vortex veloc
field. The critical wave numberkc , frequencyvc @4,6–8,31–
33#, and eigenfunctionŵ(r') @32,34# depending on the co
ordinatesr' perpendicular to the critical wave vector of th
downstream propagating vortex structures are known
functions of Re from a linear stability analysis of the bas
flow.

In the absence of fluctuations the spatiotemporal beha
of the complex vortex amplitudeA(x,t) is determined by the
1D CGLE:

t0~] t1v]x!A~x,t !5@~11 ic0!m1~11 ic1!j0
2]x

2#A~x,t !

1~nonlinear terms!. ~2.4!

The coefficientst0 and j0
2 are even in Re while the grou

velocity v and the imaginary partsc0 ,c1 are odd in Re
@5,31#.

B. Absolute and convective instability

For smallm and Re the control parameter plane is divid
into three domains characterized by different growth beh
ior of linear perturbations of the basic flow state. In th
presence of through-flow one has to distinguish@19# between
the spatiotemporal growth behavior of spatially localiz
perturbations and that of spatially extended ones. Below
thresholdm50 for onset of propagating vortex patterns a
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55 5511NOISE SUSTAINED PATTERN GROWTH: BULK . . .
perturbation, spatially localized as well as extended, dec
This is the parameter regime of absolute stability of the ba
state.

For m.0 extended perturbations can grow. However
spatially localized perturbation, i.e., a packet of plane wa
perturbations, is advected in the so-called convectively
stable parameter regime faster downstream than it grow
while growing in the comoving frame it moves out of th
system@19–21,35#. Thus, the downstream as well as the u
stream facing intensity front of the vortex packet move in
same direction, namely, downstream. A spatially localiz
perturbation is blown out of any system of finite length a
the basic state is reestablished. It therefore requires a pe
tent source of perturbations such as, e.g., noise operatin
the bulk or fluctuations entering the system via the inlet
sustain a vortex pattern in the convectively unstable reg
@21#. The spatiotemporal behavior of such ‘‘noise sustain
structures’’@8,12# being determined by the noise source th
allows one to infer properties of the latter from the forme

In the absolutely unstable regime a localized perturba
not only grows in the downstream direction but it grows a
spatially expands also in the upstream direction until the
stream propagating front encounters the inlet in a finite s
tem @13#. The final nonlinear stucture@4,5,9,10,13–15,36#
resulting in such a situation is self-sustained and stable.
sufficiently large amplitudes this structure is dominated
the deterministic contributions in the relevant balance eq
tions and thus it is insensitive to, say, thermal noise.

Within the framework of the amplitude equation th
boundary between absolute and convective instability
given by @21#

mconv
c 5

t0
2v2

4~11c1
2!j0

2 . ~2.5!

Thus, the convectively unstable regime investigated her
characterized by 0,m,mconv

c or, equivalently, by the re-
duced group velocity

V5
t0

j0A~11c1
2!m

v52Amconv
c

m
, ~2.6!

being larger than 2. It should be mentioned that the am
tude equation approximation~2.5! of mconv

c describes the
boundary between absolute and convective instability res
ing from the full hydrodynamic field equations@8,37# very
well in the RB and TC systems for the small Reynolds nu
bers considered here.

C. Stochastic amplitude equation

The starting point of most theoretical approaches to
scribe the effect of thermal noise on macroscopic hydro
namic pattern growth is the Langevin concept of Landau
Lifshitz @27#. Therein the linear hydrodynamic field equ
tions are heuristically supplemented by Gaussian distribu
statistically stationary stochastic forces with zero me
Their two-point correlation functions reflect the isotropy a
translational invariance of an unbounded system and t
frequency and wave vector spectra are white. Projec
s.
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@22–26# of these equations onto the critical modes leads t
to the linear stochastic CGLE,

@t0~] t1v]x!2~11 ic0!m2~11 ic1!j0
2]x

2#A~x,t !5 f ~x,t !,
~2.7!

with Gaussian distributed complex forcesf (x,t) that ared
correlated in space and time:

^ f ~x,t !&5^ f ~x,t ! f ~x8,t8!&50, ~2.8a!

^ f ~x,t !@ f ~x8,t8!#* &5Fd~x2x8!d~ t2t8!. ~2.8b!

Here the asterisk implies complex conjugation. The no
strengthF has been evaluated by several authors@22–26# for
the RB and TC systems without through-flow and with d
ferent boundary conditions. Since we do not need the s
cific values ofF we shall not dwell on questions of whethe
and how the forces are changed by finite-size effects, sys
geometry, and the through-flow. We rather take Eqs.~2.7!
and ~2.8! as the starting point for our investigations.

However, for later use we mention that ourF is related
via F52j0t0FA

SBH to the noise strengthFA
SBH given in Eqs.

~2.10!–~2.16! of SBH. We would also like to mention tha
the value ofF characterizing a particular system depends
the arbitrary choice of the normalization condition for th
linear critical modeŵ(r') that enters into Eq.~2.3! and that
establishes the relation between the physically observ
order parameter fieldw(x,r' ;t) and the complex amplitude
A of the critical mode.

III. LINEAR STOCHASTIC CGLE
IN SEMI-INFINITE SYSTEMS

In this section we discuss the statistical dynamics of p
tern growth in the convectively unstable parameter regime
described by the stochastically forced linear CGLE~2.7!. We
consider a semi-infinite system with the through-flow ent
ing the system atx50. This flow transports fluctuations int
the system that we specify by imposing an inlet bound
conditionA(x50,t) on the amplitudeA. We consider situa-
tions in whichA(x50,t) is the result of a statistically sta
tionary process; see Sec. IV A for a model. Thus, with t
bulk forces f (x,t) being also statistically stationary we re
strict our investigations to the long-time statistically statio
ary fluctuations ofA(x,t)—initial transients occurring in ex-
periments after, e.g., changing control parameters have
out. Under these circumstances we found it convenien
perform part of our analysis in frequency space. After a te
poral Fourier transformation,

A~x,v!5E
2`

`

dteivtA~x,t !, ~3.1!

the stochastic CGLE becomes an ordinary, second-order
homogeneous differential equation

@t0~2 iv1v]x!2~11 ic0!m2~11 ic1!j0
2]x

2#A~x,v!

5 f ~x,v!, ~3.2a!

which is to be solved subject to the inlet boundary condit
A(x50,v). A condition on the derivative ofA at the inlet or,
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5512 55M. LÜCKE AND A. SZPRYNGER
equivalently, on the behavior ofA for x→1` follows from
a physical requirement discussed in Sec. III A below.

For later use we rewrite the CGLE in the form

2~11 ic1!j0
2~]x2 iK 1!~]x2 iK 2!A~x,v!5 f ~x,v!,

~3.2b!

which displays the spatial eigenvaluesK1,2 of the CGLE
explicitly—in the solution of Eq.~3.2! there appear contri
butions of the formeiK1x andeiK2x, whereK1,2 are the com-
plex v-dependent characteristic exponents, i.e., spatial
genvalues of Eq.~3.2!:

j0A11 ic1K1
2
56 iA~12 ic1!mconv

c 2~11 ic0!m2 ivt0

2 iA~12 ic1!mconv
c . ~3.3!

The physically relevant characteristic exponent that cont
the spatial growth of vortices in the downstream direction
K1, whereas the second eigenvalue of the CGLE is such
ImK2,0 for all m and allv.

ImK1(v;m) is for m,0 positive so that the spatia
growth rate2ImK1 is negative, implying spatial decay o
each frequency modev. Form.0 selective amplification of
frequency modes out of a finite bandv2,v,v1 occurs:

ImK1~v;0,m,mconv
c !,0 for v2,v,v1 ~3.4a!

ImK1~v;0,m,mconv
c !.0 forv,v2 and v.v1 .

~3.4b!

The band limits for amplification are

t0v6562A~11c1
2!mmconv

c 1~c12c0!m. ~3.5!

ImK1 has a quadratic minimum at the frequency

vm52~c01c1!m/t0 , ~3.6!

which is, due to the smallness ofc0 and c1, in general lo-
cated close tov50. Thus, the frequency mode with large
spatial growth isvm .

For plots of2ImK1 versusv see, e.g.,@29#, Fig. 1 and
@8#, Fig. 14. The relations to our exponentK1 are iK 15k
@29#5b @8#.

A. Spatial Laplace transformation

We have solved the CGLE~3.2! with the Green’s function
method and, equivalently, using a spatial Laplace trans
mation. The latter method most clearly displays the influe
of the inlet boundary properties on the solution. Thus,
start with the latter method here and present the relatio
the former in Appendix A.

We use the spatial Laplace transformation

A~K !52 i E
0

`

dxe2 iKxA~x! ~K complex!. ~3.7!

Here the second argument—v or t—of A is suppressed. Us
ing the transformation properties

]xA~x!↔ iKA~K !1 iA~x!ux50 , ~3.8a!
i-

ls
s
at

r-
e
e
to

]x
2A~x!↔2K2A~K !1 i ~]x1 iK !A~x!ux50 ~3.8b!

the Laplace transformed CGLE~3.2! reads

~11 ic1!j0
2~K2K1!~K2K2!A~K,v!

5 i ~11 ic1!j0
2@]x1 i ~K2K12K2!#A~x,v!ux50

1 f ~K,v!. ~3.9!

Its mathematically formal,physically unrestrictedsolution

A~K,v!5
i @]x1 i ~K2K12K2!#A~x,v!ux50

~K2K1!~K2K2!

1
f ~K,v!

~11 ic1!j0
2~K2K1!~K2K2!

~3.10!

contains poles in the complexK plane atK1 and atK2.
Now in the physicalsolution the residue of the pole a

K2 has to vanish, i.e.,

lim
K→K2

@~K2K2!A~K,v!#50. ~3.11!

Otherwise there would be a contribution;eiK2x for
x→1` giving rise to spatial growth and a divergence
A(x→1`,v) even for subcritical drivingm,0. The physi-
cally motivated requirement that there is no growth;eiK2x

for x→1` is equivalent to selecting the ‘‘retarded’’ o
causal Green function in the solution of the CGLE~cf. Ap-
pendixes A and B1!. Therein the solution is represented by
superposition of ‘‘waves’’ that propagate~in the frame co-
moving with velocityv) outwards, i.e., away from a local
ized perturbation source;d(x2x0)d(t2t0) that creates a
perturbation pulse atx0, t0. For m,0 the ‘‘waves’’ are
damped while for 0,m,mconv

c they grow in the downstream
direction within the frequency band~3.5!. On the other hand
the ‘‘advanced’’ Green function describes inwards propag
ing waves;ei [K2(v)x2vt] that create the pulse atx0, t0. They
would cause even form,0 a divergence ofA at x→1`.

Note that the requirement~3.11! implies that for a given
forcing f (x,v) the initial slope]xA(x,v)ux50 of the ampli-
tude at the inlet is fixed by the inlet valueA(x50,v) and the
forcing f (K2 ,v)52 i*0

`dxe2 iK2xf (x,v). From Eqs.~3.10!
and ~3.11! one obtains the relation

i ~]x2 iK 1!A~x,v!ux501
f ~K2 ,v!

~11 ic1!j0
2 50. ~3.12!

Using this restriction to eliminate the slope in Eq.~3.10! the
physical solution of the CGLE can be written as the sum
two terms:

A~K,v!5Ain~K,v!1Ab~K,v!. ~3.13a!

Here

Ain~K,v!52
A~x50,v!

K2K1
~3.13b!

is the contribution from the inlet fluctuationsA(x50,v)
while
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Ab~K,v!5
f ~K,v!2 f ~K2 ,v!

~11 ic1!j0
2~K2K1!~K2K2!

~3.13c!

is caused by bulk forcing. In real space the solution read

A~x,v!5Ain~x,v!1Ab~x,v!, ~3.14a!

where

Ain~x,v!5A~x50,v!eiK1x ~3.14b!

and

Ab~x,v!5
i

~11 ic1!j0
2~K12K2!

3S E
0

x

dx8~eiK1~x2x8!2eiK2~x2x8!! f ~x8,v!

2 ~eiK1x2eiK2x!E
0

`

dx8e2 iK2x8 f ~x8,v! D .
~3.14c!

Note that the bulk part vanishes at the inlet bounda
Ab(x50,v)50.

B. Digression: constant bulk and inlet forcing

In this subsection we make a digression to investigate
special case

f ~x,v!52pd~v! f 0 , A~x50,v!52pd~v!A0 ~3.15!

of constant~deterministic! forcing f (x,t)5 f 0 in the bulk and
constant inlet boundary conditionA(x50,t)5A0. This in-
vestigation is useful and instructive for two reasons:~i! It
allows one to check the general solution~3.14! for a special
case that can easily be solved analytically in a direct w
without Laplace transformation and that furthermore can e
ily be solved numerically.~ii ! It gives insight into the way
the initial slope]xAux50, inlet valueA0, and bulk forcing
f 0 are tied to each other.
We consider in this subsection the stationary solut

A(x) of the CGLE, i.e.,A(x,v)52pd(v)A(x). Then Eq.
~3.14b! gives

Ain~x!5A0e
iK1

0x ~3.16a!

and ~3.14c! becomes

Ab~x!5
f 0

~11 ic1!j0
2K1

0K2
0 ~12eiK1

0x! ~3.16b!

with K1
05K1(v50) andK2

05K2(v50) given by Eq.~3.3!.
The complete solution reads

A~x!5Ain~x!1Ab~x!5A0e
iK1

0x2
f 0

~11 ic0!m
~12eiK1

0x!.

~3.16c!

Here we have used (11 ic1)j0
2K1

0K2
052(11 ic0)m. The

physically motivated restriction~3.11!, ~3.12! on the slope at
the inlet becomes in our special case
,

e

y
s-

n

]xA~x!ux505 iK 1
0A02 i

f 0
~11 ic1!j0

2K2
0

5 iK 1
0FA01

f 0
~11 ic0!m

G ~3.17!

since f (K2 ,v)52 f 02pd(v)/K2
0 for constant forcing. We

have checked the validity of Eq.~3.16c! also by direct nu-
merical integration of the~nonlinear! CGLE.

C. Correlation functions

Here we investigate the frequency spectrum

C~x,v!5E
2`

`

d~ t2t8!eiv~ t2t8! C~x,ut2t8u! ~3.18!

of the time-displaced autocorrelation function

C~x,ut2t8u!5^A~x,t !@A~x,t8!#* & ~3.19!

of amplitude fluctuationsA(x,t) at the same downstream
positionx. Since the semi-infinite system with through-flo
is spatially not translational invariant the correlations~3.19!
depend explicitly on the positionx. On the other hand, the
statistical stationarity of the forcing processes in the bulk a
at the inlet causes a temporal dependence only viaut2t8u.
Using this property one has

C~x,v!5
^A~x,v!@A~x,v8!#* &

2pd~v2v8!
. ~3.20!

We consider inlet fluctuationsA(x50,v) that are deter-
mined by forces operating outside the bulk fluid volume,
instance, by fluctuating forces in the upstream part of
experimental setup. Thus, in the convectively unstable
gime the contributionAb(x,v) ~3.14c! due to bulk forcing is
uncorrelated with the inlet fluctuationsA(x50,v) so that

^A~x50,v!@Ab~x,v8!#* &505^Ain~x,v!@Ab~x,v8!#* &.
~3.21!

Therefore

C~x,v!5Cin~x,v!1Cb~x,v! ~3.22a!

is the sum of correlations

Cin~x,v!5e22 ImK1xD~v! ~3.22b!

of the contributionAin(x,v) ~3.14b! caused by inlet fluctua-
tions and of correlations

Cb~x,v!5
F

2~11c1
2!j0

4uK12K2u2
H 1

ImK1
2

1

ImK2

1S 4 Im 1

K1*2K2
2

1

ImK1
2

1

ImK2
De22 ImK1x

14 ReF S 1

2 ImK2
1

i

K1*2K2
Dei ~K12K2!xG J

~3.22c!
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5514 55M. LÜCKE AND A. SZPRYNGER
of Ab(x,v) ~3.14c! caused by bulk forcing. Here

D~v!5Cin~x50,v!5
^A~x50,v!@A~x50,v8!#* &

2pd~v2v8!
~3.23!

is the fluctuation spectrum of the inlet amplitude. The e
pression~3.22c! for

Cb~x,v!5
^Ab~x,v!@Ab~x,v8!#* &

2pd~v2v8!
~3.24!

is obtained directly from Eq.~3.14c! by using the force cor-
relations

^ f ~x,v!@ f ~x8,v8!#* &5d~x2x8!2pd~v2v8!F. ~3.25!

Let us briefly discuss the small-x and the large-x behavior
of C(x,v): Since Cb(x50,v)50 one has
C(x50,v)5Cin(x50,v)5D(v). Furthermore,Cin varies
linearly andCb quadratically inx close to the inlet.

The large-x behavior is physically more interesting sinc
it tells how and which frequency modes are amplified. H
one has to distinguish the two cases~i! ImK1.0 and ~ii !
ImK1,0. Case~i! holds for allv if m,0 and forv outside
the band (v2 ,v1) of growing frequency modes ifm.0.
For these damped modes the autocorrelation approach
large distances from the inlet the limit value

lim
x→`

C~x,v!5
F

2~11c1
2!j0

4uK12K2u2
S 1

ImK1
2

1

ImK2
D .

~3.26a!

The fluctuations of these damped modes are influenced
sustained at large distances from the inlet only by the b
forcing. The limiting value~3.26a! coincides with the auto-
correlation

C`~v!5E
2`

` dk

2p

3
F

u~11 ic1!j0
2k22m~11 ic0!2 i ~v2vk!t0u2

~3.26b!

of amplitude fluctuations in an infinite system,2`,x,`,
that is translational invariant without inlet boundary con
tions.

In case~ii ! of ImK1,0, i.e., form.0 andv2,v,v1

there is exponential growth. Then the correlation function
dominated for largex by

C~x→`,v!→FD~v!2
F

2~11c1
2!j0

4uK1*2K2u2

3S 1

ImK1
1

1

ImK2
D Ge22 ImK1x. ~3.27!

To derive Eq.~3.27! from Eq. ~3.22! we have used the rela
tion
-

e

at

nd
lk

s

1

uK12K2u2
S 4 Im 1

K1*2K2
2

1

ImK1
2

1

ImK2
D

5
21

uK1*2K2u2
S 1

ImK1
1

1

ImK2
D . ~3.28!

Equations~3.22! for the spectra of amplitude fluctuation
and their large-x limiting behavior are the central result o
this paper. It allows one to assess the influence of~externally
generated! inlet fluctuations and of bulk stochastic force
separately.

IV. INLET AND BULK GENERATED FLUCTUATIONS

Here we first introduce a simple model for the frequen
spectrumD(v) ~3.23! of inlet fluctuations of the amplitude
A(x50). It allows one to make quantitative estimates of t
importance of their contributionsCin(x,v) ~3.22b! relative
to those of the bulk generated fluctuationsCb(x,v) ~3.22c!.

A. Model for inlet fluctuations

In Ref. @29# D(v) was estimated by projecting transver
momentum current fluctuations in thermal equilibrium on
the critical mode of the hydrodynamic field equations. The
fluctuations were assumed to be advected towards the
from an upstream partx,0 without deterministic driving,
mI 521, and to enter the main supercritical part of the e

perimental cell, e.g., via a porous plug atx50. Thus, the
Rayleigh number Ra or the Taylor numberT in the upstream
part was taken to be zero in@29#. In experiments, however
one often has an upstream section2LI ,x,0 to the left of

the inlet atx50 in which the fluid is equilibrated at a finite
subcritical drivingmI ,0. In the remainder of this paper w
mark quantities characterizing such a subcritical upstre
part of the system by an underbar.

Babcock, Ahlers, and Cannell@8# have numerically
solved the stochastic CGLE for such a setup w
LI 50.1,mI 520.1, and boundary conditionA(x52LI ,t)50.
We consider a situation whereLI is sufficiently large. Then
perturbations, e.g., from the pumping machinery that
swept atx52LI into the subcritical upstream part of th
apparatus have decayed by the time the fluid reaches
inlet, x50, of the supercritical part. Thus, one ideally has
x50 only fluctuations in the hydrodynamic fields that a
sustained by thermally activated fluctuating forces. The m
important field fluctuations are those with wave numb
close to the critical one and with spatial variation in t
directions perpendicular to the through-flow similar to t
critical mode. We approximately describe the dynamics
the amplitude of these modes with the linear stocha
CGLE ~2.7!, now, however, for subcritical drivingmI ,0.
Therein, the spectrum of amplitude fluctuations atx50 that
are generated at subcritical driving by thermal forci
f (x<0,t) alone—LI is large—is given by Eq.~3.26! with
m5mI ,0:
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D~v!5C`~v;mI !

5
F

2~11c1
2!j0

4uK1I2K2I u2 S 1

ImK1I
2

1

ImK2I
D . ~4.1!

The total spectral power of these noise generated fluctuat
of the amplitudeA(x50) of the critical mode at the inlet

D~ t50!5E
2`

` dv

2p
D~v!5

F

4t0j0A2mI
~4.2!

increases with increasing driving in the subcritical upstre
section and diverges in the absence of nonlinearities in
~2.7! at the critical drivingmI 50. Thus, the estimate~4.1! is
only realistic for a situation where the noise generated a
plitudes in the upstream part are small enough to neglect
nonlinear contributions in the hydrodynamic field equatio
i.e., for mI not too close to zero. If that is the case then

variation}1/A2mI in the inlet contribution should be exper
mentally observable.

In Fig. 1 we show the inlet spectrumD(v) ~4.1! normal-
ized byt0D(t50) versus reduced frequencyvt0 for several
subcritical upstream control parameters as indicated. The
let spectrumD(v) is dominated by the term 1/ImK1I . It con-

trols themI variation of the peak height and of the peak wid
of D(v) and it governs the strong enhancement of th
modes aroundv50 that can grow in the supercritical down
stream part of the system.

Finally we would like to comment on the objection@25#
against using, in a system without translational invarian
thermal equilibrium spectra for inlet fluctuations that com
from the mI 521 upstream part in@29#. This seems to be
well justified in view of the fact that downstream forces
not influence upstream locations—downstream gener
perturbations cannot propagate upstream if the through-
is smaller than the convectively unstable threshold. Thus

FIG. 1. SpectrumD(v) ~4.1! of amplitude fluctuations at the
inlet normalized byt0D(t50) vs reduced frequencyvt0 for sev-
eralm. Parameters@39# are for Re52.
ns

q.

-
he
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e

,

ed
w
r

any x in the upstream section that is sufficiently far aw
from LI one should observe fluctuations as in an infinite s
tem. For the stochastic CGLE this is reflected by the equa
of Eqs.~3.26a! and ~3.26b!. But the corresponding propert
holds also for the full linear field equations with throug
flow.

B. Comparison of inlet and bulk generated fluctuations

In Fig. 2 we show the downstream evolution of the spe
tral contributionsCin(x,v) ~3.22b! and Cb(x,v) ~3.22c!
from inlet and bulk forcing, respectively, to the total spe
trum of amplitude fluctuations. The contributions are r
duced byF/j0 measuring the forcing strength. The inlet flu
tuations C(x50,v)5Cin(x50,v)5D(v) are taken from
the model of Sec. IV A with a subcritical upstream driving
mI 520.1. The Reynolds number is Re52 and the supercriti-

cal downstream driving ism5mconv
c / 250.03. For these pa

rameters the band limits~3.5! of amplification ImK1(v),0
are v2t0520.084 andv1t050.086, respectively. While
the logarithmic scale of the ordinate tends to obscure
boundaries between growing and decaying frequency mo
the left borderv2 of the amplification band can be identifie
in the plots ofCin(x,v) of Fig. 2 by their crossing point—
there,Cin spectra at differentx have the same value fo
ImK150 .

The bulk contributionCb that vanishes at the inlet is at
distance of one correlation lengthj0 still smaller than the
inlet contribution. Then, with a growing downstream di

FIG. 2. Downstream evolution of the reduced contributio
Cin(x,v) ~3.22b! and Cb(x,v) ~3.22c! to amplitude fluctuation
spectra. Being practically symmetric inv for our parameters
Cinj0 /F ~left side! andCbj0 /F ~right side! can be continued sym
metrically to the other side. Inlet fluctuationsCin(x50,v)5D(v)
are taken from our model with subcritical upstream drivi
mI 520.1. Parameters@39# are Re52, m5mconv

c /250.03.
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5516 55M. LÜCKE AND A. SZPRYNGER
tanceCb becomes larger. Atx520j0 the bulk contribution
has almost reached its large-x single exponential growth as
ymptotics}e22 ImK1(v)x. There the contribution toCb from
the last term}ei [K1(v)2K2(v)]x in Eq. ~3.22c! is already
small.

That can also be seen in Fig. 3. There we show for
same supercritical downstream drivingm5mconv

c /250.03
that was used in Fig. 2 the downstream growth of the sp
tral peakCb(x,v50) in comparison with the peak heigh
Cin(x,v50) of the inlet contribution—for our paramete
the spectral maxima are located practically atv50.Cin was
evaluated for several subcritical upstream driving values
mI as indicated. The dashed line labeledCSBH is discussed in
Appendix B3. Thus, for the values ofmI in Fig. 3 the bulk
contribution rapidly outgrows the inlet contribution. A sim
lar observation was made also in the numerical treatmen
Babcock, Ahlers, and Cannell@8#.

The slope of the straight linesCin and of the asymptotics
of Cb andCSBH is given by22 ImK1

0, where the superscrip
0 indicates that the eigenvalueK1 is taken atv50. In the far
downstream region the ratio of the spectral maxima ofCb
and Cin approaches according to Eq.~3.27! the limiting
value

lim
x→`

Cb~x,v50!

Cin~x,v50!

52
F/D~v50!

2~11c1
2!j0

4uK1
0*2K2

0u2 S 1

ImK1
0 1

1

ImK2
0D .
~4.3!

If one uses forD(v50) the result~4.1! of our model one

FIG. 3. Downstream growth of spectral peaks. They are loca
very close to v50 for our parameters @39# Re52,
m5mconv

c /250.03. Thin lines showCin(x,v50)j0 /F coming from
inlet fluctuations~Sec. IV A! obtained for different subcritical up
stream drivingmI . For the SBH resultCSBH(x,v50)j0 /F ~B12!
represented by the thick dashed line the inlet fluctuations are fi
by construction viam,Re ~cf. Appendix B 3!.
e

c-

f

of

finds for the parameters of Fig. 3 that the bulk genera
downstream fluctuationsCb dominate over the fluctuation
that are swept into the system through the inlet whenever
upstream drivingmI ,20.025. If the downstream drivingm
is smaller than in the example of Fig. 3 then the size of in
fluctuations that would ensureCin to be comparable toCb
for largex would have to be larger—i.e.,mI would have to be
even closer to zero.

Thus we conclude thattypically the large-~small-! x be-
havior is governed by bulk~inlet! fluctuations. However, our
upstream model clearly shows that in appropriately desig
experimental upstream sections—withLI being long enough
to avoid influence of the pumping machinery operating
x52LI—one can tune and enhance the inlet noise atx50
almost arbitrarily by selecting the subcritical upstream dr
ing mI accordingly. Finally we would like to stress that ou
model for inlet fluctuations contains only internal therm
fluctuations generated in the subcritical upstream part
does not contain other perturbations, e.g., from the pump
machinery, that might in an experimental setup be advec
towards the inlet. Their contribution to the inlet fluctuatio
spectrum would have to be added to our model spect
~4.1!. However, since our general formulas in Sec. III ha
been derived for arbitrary inlet fluctuations with spectru
D(v) they also apply to such a situation.

V. CONCLUSION

We have investigated the effect of inlet fluctuations a
bulk stochastic forcing on noise sustained pattern growth
semi-infinite systems, 0<x, with through-flow in the con-
vectively unstable parameter regime. We have used a
CGLE that is appropriate for forward bifurcating structur
in order to quantitatively compare both effects on the sta
tical dynamics of the downstream growth of the compl
pattern amplitudeA(x,t).

To that end we have solved the linear stochastic CG
subject to arbitrary, statistically stationary boundary con
tions at the inletx50 in the presence of bulk additive forc
ing f (x,t) with a spatial Laplace transform. This method
well suited for the semi-infinite geometry: inlet and bu
forcing are easily dealt with separately since they both
pear explicitly and additively via boundary and inhomog
neous terms, respectively. Furthermore, this approach ea
allows one to identify the contributions to the general ma
ematical solution from a pole atK2(v) in the complex wave-
number plane that have to be discarded on physical grou
since they would cause growth even for subcritical cont
parameters. The physically motivated restriction is equi
lent to choosing the ‘‘space-retarded, causal’’ Green funct
that describes propagation away from~and not towards! a
localized perturbation pulse. The restriction imposes a re
tion between the inlet conditions onA and ]xA on the one
hand and the bulk forcingf on the other hand. Thus, fo
example, the inlet derivative]xA is fixed in the physically
relevant solution of the second-order~in space! CGLE by
A at x50 and the bulk forcingf .

We have investigated the effect of arbitrary statistica
stationary inlet fluctuations that are independent from
bulk stochastic forces and that are, e.g., advected through

d

d
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55 5517NOISE SUSTAINED PATTERN GROWTH: BULK . . .
inlet at x50 into the systemx.0 with the through-flow
from an upstream subsystem,x,0. Then we have consid
ered a simple model for such an upstream subsystem
contains thermal fluctuations only: it is held at some subc
cal driving mI ,0 and the thermally generated fluctuatio
that are advected towards the inlet are described by the
chastic CGLE. Thus,mI allows one to tune the strength of th
advected inlet fluctuation spectrum.

If the drivingm in the downstream partx.0 is subcritical
then all frequency modes are damped. Then the correla
spectrumC(x,v) of amplitude fluctuations is at large down
stream distances from the inlet no longer influenced by
inlet fluctuations atx50 andC(x,v) approaches the trans
lational invariant spectrum of an infinite system. Howev
for supercritical downstream drivingm.0 inlet-forced as
well as bulk-forced amplitude fluctuations are growing in t
downstream direction for frequenciesv within a finite band.
Typically the contributionCb(x,v) caused by the additive
bulk forces to the correlation spectrumC(x,v) of amplitude
fluctuations at the downstream locationx rapidly outgrows
with increasingx the contributionCin(x,v) that follows
from the upstream model for inlet fluctuations. In the larg
x regime far from the inlet both contributions,Cin(x,v) as
well as Cb(x,v), grow ;e22 Im K1(v)x with 2Im K1.0
having a maximum close tov50. But the prefactors inCb
andCin are such that there the amplitude fluctuation sp
trumC(x,v) is typically dominated by the bulk contributio
Cb(x,v). However, we have shown with our model how
realize experimental setups with subcritical upstream driv
where the inlet fluctuations could be well controlled and w
defined—uninfluenced by, e.g., the pumping machiner
and tuned to be large enough to dominate over the bulk
Cb .

Finally, a detailed comparison with a recent approach
SBH showed that the boundary condition that they use at
inlet implies fluctuations there that are strongly correla
with the bulk forcing. This enhances the amplitude fluctu
tions of the growing modes and thereby tends to overe
mate the effect of thermal bulk forcing.
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APPENDIX A: GREEN FUNCTION

We are interested in the Green functionG(x,x0 ;t2t0) of
the CGLE as a solution of

@t0~] t1v]x!2~11 ic0!m2~11 ic1!j0
2]x

2#G~x,x0 ;t2t0!

5d~x2x0!d~ t2t0! ~A1!

subject to an arbitrary boundary conditio
G(x50,x0 ;t2t0) at the inlet. Because of the semi-infini
geometryG depends onx and the locationx0 of thed pulse
separately. The temporal Fourier transform ofG,
at
i-

to-

on

e

,

-

-

g
l

rt

f
e
d
-
ti-

e

G~x,x0 ;v!5E
2`

`

dteiv~ t2t0!G~x,x0 ;t2t0!, ~A2!

is conveniently written as the sum of two contributions:

G~x,x0 ;v!5eiK1xG~x50,x0 ;v!1G̃~x,x0 ;v!. ~A3!

Then the first term propagates the inlet condition in t
downstream direction and the boundary condition on
bulk contribution

G̃~x,x0 ;v!5
i

~11 ic1!j0
2~K12K2!

@2ei ~K1x-K2x0!

1u~x2x0!e
iK1~x2x0!

1u~x02x!eiK2~x2x0!# ~A4!

is G̃(x50,x0 ;v)50. The physical solution~3.13! of the lin-
ear stochastic CGLE can then be written in the form

A~x,v!5E
0

`

dx0G~x,x0 ;v! f ~x0 ,v! ~A5!

and

A~x,t !5E
0

`

dx0E
2`

t

dt0G~x,x0 ;t2t0! f ~x0 ,t0!. ~A6!

The x0 integration covers the whole spatial domainx0>0.
Causality implies contributions to come only from time
2`,t0<t prior to the observation timet. The inlet condi-
tion onG is defined by the requirement that for any give
f (x0 ,v) the integral

E
0

`

dx0G~x50,x0 ;v! f ~x0 ,v!5A~x50,v! ~A7!

yields the imposedinlet conditionA(x50,v) that can be
chosen arbitrarily and in particular independent off .

For the sake of comparison with the Green functi
GSBH used by SBH~cf. Appendix B1! we mention thatG
@Eq. ~A3!# can be rewritten as the following decompositio

G~x,x0 ;v!5eiK1x@G~x50,x0 ;v!2GSBH~2x0 ;v!#

1GSBH~x2x0 ;v!. ~A8!

Here

GSBH~x2x0 ;v!5
i

~11 ic1!j0
2~K12K2!

@u~x2x0!e
iK1~x2x0!

1u~x02x!eiK2~x2x0!# ~A9!

is the Green function used by SBH and

GSBH~2x0 ;v!5
i

~11 ic1!j0
2~K12K2!

e2 iK2x0

~A10!

is its value at the inlet. Note that the ‘‘space-retarde
causal’’ nature of the Green function can readily be read
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from Eq. ~A9!. It describes spreading off—not contractio
towards—the perturbation pulse atx0: the first ~second! ex-
ponential in Eq.~A9! accounts for the spreading in the dow
stream~upstream! direction with complex wave numberK1
(K2). Downstream growth occurs for frequencies w
ImK1(v),0 while the spreading in the upstream direction
always damped given that ImK2,0.

Since the linear operator appearing in the CGLE~3.2!,
i.e., the square bracket in Eq.~A1!, is }(]x2 iK 1)
3(]x2 iK 2) it is clear from Eq. ~A8! that bothG and
GSBH solve Eq.~A1!, however, with different inlet condi-
tions.

APPENDIX B: COMPARISON WITH SBH

1. Green functionGSBH„x2x0 ;v…

Here we derive the expression~A9! for
s
f
n

d
in
n
e
n

GSBH~y;v!5
i

~11 ic1!j0
2~K12K2!

3@u~y!eiK1y1u~2y!eiK2y#, ~B1!

with y5x2x0 by temporally Fourier transforming the Gree
function

GSBH~y;t!5
u~t!

t0
e~11 ic0!mt/t0

3E
2`

` dk

2p
expF2~11 ic1!j0

2k2
t

t0

1 ik~y2vt!G ~B2!

given in Eqs.~C18!, ~C19! of SBH for t5t2t0.0. Invert-
ing the sequence of integrations, one obtains
GSBH~y;v!5
1

t0
E

2`

` dk

2p
eikyE

0

`

dtexpF ivt1~11 ic0!m
t

t0
2~11 ic1!j0

2k2
t

t0
2 ikvtG

5
1

t0
E

2`

` dk

2p
eikyE

0

`

dtexpF2~11 ic1!j0
2~k2K1!~k2K2!

t

t0
G5

1

~11 ic1!j0
2E

2`

` dk

2p

eiky

~k2K1!~k2K2!
.

~B3!
q.

the
The above integral along the realk axis can be calculated a
a contour integral in the complexk plane with the method o
residues. Fory.0 (y,0) one has to close the integratio
contour in the upper~lower! complex half plane.

The pole atK2 contributes only fory,0 since it lies with
ImK2,0 always in the lower half of the complexk plane. It
yields the second term in Eq.~B1!. The pole atK1 lies for
subcriticalm,0 in the upper half of the complexk plane. It
causes the term}eiK1y for y.0 in Eq. ~B1! to come from
the contour closed in the upper half of the complexk plane.
However, whenm.0 this pole crosses the realk axis and
moves into the lowerk plane for frequencies within the ban
~3.5! of growing modes. In order to retain its contribution
Eq. ~B1! for y.0 one has to deform the original integratio
path along the realk axis into a contour reaching into th
lower k plane that enclosesK1 such that this pole remains i
the interior.

Alternatively one can first perform thek integration in Eq.
~B2! and then Fourier transform the result:

GSBH~y;v!5
1

2j0A~11 ic1!pt0

3E
0

`dt

At
expF ivt1~11 ic0!m

t

t0

2
~y2vt!2t0
4~11 ic1!j0

2tG . ~B4!
Using At as an integration variable one finds with E
~3.472-1! of Gradshteyn and Ryzhik@38# that

GSBH~y;v!5
1

g
eay2bAy2, ~B5a!

with

a5
vt0

2~11 ic1!j0
2 , ~B5b!

b5Aa22
ivt01~11 ic0!m

~11 ic1!j0
2 , ~B5c!

g52b~11 ic1!j0
2 . ~B5d!

Expressinga, b, andg in terms of the eigenvaluesK1,2 @Eq.
~3.3!# and using the fact thatAy2/y5sgn(y) one verifies that
Eq. ~B5! agrees with Eq.~B1!.

2. Amplitude fluctuations ASBH„x,v…

The amplitude fluctuations of SBH are expressed with
help of the Green functionGSBH as

ASBH~x,t !5E
0

`

dx0E
2`

t

dt0GSBH~x2x0 ;t2t0! f ~x0 ,t0!.

~B6!
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Here we deal with the statistically stationary situation wh
the stochastic forces have been operating since the
t052`. On the other hand, SBH enforce the initial cond
tion ASBH(x,t50)50 at timet50 by integrating in Eq.~B6!
only from t050 to t05t—cf. Eq. ~C.20! in @25#. Since we
are interested, however, in comparing thelong-timeproper-
ties of their results with ours this difference does not pla
role—the formulas labeled with the subscript SBH in th
and the next subsection refer to the long-time limit of t
SBH results in@25#.

In frequency space the long-time amplitude fluctuatio
of SBH follow with Eq. ~B1! to be

ASBH~x,v!5
i

~11 ic1!j0
2~K12K2!

3F E
0

x

dx0e
iK1~x2x0! f ~x0 ,v!

1E
x

`

dx0e
iK2~x2x0! f ~x0 ,v!G . ~B7!

Note that the SBH solution is a very special one in the se
that it assumes the long-time amplitude fluctuations at
inlet to be of the form

ASBH~x50,v!5
i

~11 ic1!j0
2~K12K2!

3E
0

`

dx0e
2 iK2x0f ~x0 ,v!

5
2 f ~K2 ,v!

~11 ic1!j0
2~K12K2!

. ~B8!

Thus, the inlet boundary condition is not treated as an in
pendent quantity that can be imposed on the solution of
CGLE. Rather the inlet boundary value forA is related to
and determined explicitly by the bulk forcingf (x0 ,v). How-
ever, when we impose in ourgeneral solution ~3.14! the
special inlet conditionASBH(x50,v) of SBH we get the
same result as SBH. In fact, our general solution~3.14! can
be written in the form

A~x,v!5ASBH~x,v!1eiK1x@A~x50,v!2ASBH~x50,v!#
~B9!

with an inlet boundary conditionA(x50,v) that is still free
to be chosen.

Finally we mention that the derivative of the special SB
solution at the inlet,

]xASBH~x,v!ux505
2K2

~11 ic1!j0
2~K12K2!

3E
0

`

dx0e
2 iK2x0f ~x0 ,v!

5 iK 2ASBH~x50,v!, ~B10!

is such that also the SBH solution obeys the relation~3.12!,
e
e

a

s

e
e

e-
e

i ~]x2 iK 1!ASBH~x,v!ux501
f ~K2 ,v!

~11 ic1!j0
2 50, ~B11!

discussed in Sec. III A, which prevents unphysical behav
for x→`.

3. Correlation function CSBH„x,v…

Using ^ASBH(x,v)@ASBH(x,v8)#* &52pd(v
2v8)CSBH(x,v) to evaluate the correlation spectrum o
obtains from Eq.~B7!

CSBH~x,v!5
F

2~11c1
2!j0

4uK12K2u2

3F 1

ImK1
~12e22 ImK1x!2

1

ImK2
G

~B12!

with inlet correlations being given by

CSBH~x50,v!5
F

2~11c1
2!j0

4uK12K2u2
21

ImK2
. ~B13!

These correlation spectra have to be compared with our
sult, Eqs. ~3.22! and ~3.23!. Note thatF52j0t0FA

SBH as
mentioned already in Sec. II C.

To that end we show in Fig. 4 amplitude fluctuation spe
tra at the inlet,x50, and further downstream,x510j0, for
Re52 andm5mconv

c /250.03. Full lines show our results us

FIG. 4. Reduced correlation spectra of amplitude fluctuation
~a! inlet, x50, and ~b! further downstream,x510j0. Parameters
@39# are Re52, m5mconv

c /250.03. Full lines show our results usin
inlet fluctuation spectra~Sec. IV A! obtained for different subcriti-
cal upstream drivingmI . Inlet fluctuations entering into the SBH
result~dashed lines! are fixed by construction viam,Re~cf. Appen-
dix B 3!.
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ing inlet fluctuation spectra~Sec. IV A! obtained for differ-
ent subcritical upstream drivingmI as indicated. The mos
important difference is that in SBH the inlet fluctuations a
determined by the bulk forcingf with a spectrum~B13! that
is fixed byF, Re, andm whereas in our more general ca
the inlet boundary condition on the amplitudeA is still open.
In the case that upstream fluctuations outside the main
tem generate ourA(x50,v) the latter is statistically inde
pendent of amplitude fluctuationsAb(x,v) ~3.14c! that are
generated in the bulk by the random forcesf , i.e.,
^A(x50,v)@Ab(x,v8)#* &50 ~3.21!.

This different correlation behavior influences not only t
amplitude fluctuations close to the inlet but also the largx
correlation spectrum of the growing frequency modes w
ImK1,0. Only the correlation spectra of thedampedmodes
with ImK1.0 are in both approaches the same for largex:
CSBH(x→`,v)5C(x→`,v)5C`(v). Equation ~3.26!
holds for the damped frequencies with ImK1.0 since at
x→` these modes no longer feel any influence of the in
boundary condition. However, for thegrowingmodes with
ImK1,0,

CSBH~x→`,v!→2
F

2~11c1
2!j0

4uK12K2u2
1

ImK1
e22 ImK1x

~B14!

differs from

FIG. 5. Ratio of spectral peak heights of amplitude fluctuatio
according to SBH and to our work. The correlation spectra h
almost reached their large-x asymptotic form atx520j0. Our spec-
tra were evaluated using inlet fluctuations~Sec. IV A! obtained for
different subcritical upstream drivingmI . Inlet fluctuations entering
into the SBH result are fixed by construction viam,Re ~cf. Appen-
dix B 3!. Parameters@39# are Re52, m5mconv

c /250.03.
s-

h

t

C~x→`,v!→FD~v!2
F

2~11c1
2!j0

4uK1*2K2u2

3S 1

ImK1
1

1

ImK2
D Ge22 ImK1x. ~B15!

Thus, if one just replaces in Eq.~B15! our inlet spectrum
D(v) by CSBH(x50,v) @Eq. ~B13!# one does not recove
the SBH result~B14! since the SBH spectrum was derive
for inlet fluctuationsASBH(x50,v) @Eq. ~B8!#, which are
correlated with the bulk forcingf while our inlet boundary
condition onA is chosen to be externally determined a
thus independent of the bulk forcing.

These additional correlations between inlet,x50, and
downstream positions,x.0, that are present in the SBH so
lution enhance the SBH spectra compared to our spec
Consider, e.g., the casemI 520.05 in Fig. 4 for which our
inlet fluctuation spectrum is even larger tha
CSBH(x50,v). Nevertheless, the downstream amplitu
fluctuation spectrumCSBH(x,v) rapidly outgrows our
C(x,v). The effect of this correlation enhanced downstre
growth of SBH can also be seen in Fig. 3—compare
dashed line for the peak heightCSBH(x,v50) with our re-
sult C(x,v50) for mI 520.05.

This effect can be measured quantitatively, e.g., by co
paring the prefactors of the large-x exponential growth be-
havior of Eq.~B14! with that of Eq.~B15!. To that end we
ignore the imaginary coefficientsc0 andc1 in view of their
smallness@39#. Then the ratio of the spectral peak heights
v50 has the form

CSBH~x→`,v50!

C~x→`,v50!
→

m̂

2~12m̂ !~12A12m̂ !

3
A12m̂I

A12m̂I 2m̂/m̂I
, ~B16!

where

m̂5m/mconv
c .0, mÎ 5mI /mconv

c ,0 ~B17!

denote reduced control parameters. For not too largem̂ the
ratio ~B16! is close to 1. However, whenm̂ approaches 1 it
becomes large. The coefficientsc0 ,c1 remove the singularity
present at m̂51 in Eq. ~B16!. In Fig. 5 the ratio
CSBH(x,v50)/C(x,v50) of the peak heights of thefull
correlation spectra is shown atx520j0 versus reduced
downstream drivingm̂. This ratio differs only slightly from
the large-x asymptote~B16! because of a small contributio
from the last term in Eq.~3.22c!.

The inlet fluctuations resulting from the upstream part
the system would have to be very large; i.e.,mI would have to
be very close to zero in order to cause downstream fluc
tion amplitudes that are as large as those of the SBH
proach. Furthermore, if thermal equilibrium fluctuatio
were causing the inlet fluctuations as described by the
forced casemI 521 in our upstream model the discrepan
would be even larger. Thus, in agreement with an assessm
made in the introduction of@25# we conclude that the SBH
result overestimates the effect of thermal noise mainly
cause the inlet boundary is not treated adequat

s
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